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Abstract

Worker mobility and wages have declined in the US amid rising employer market power. I
propose a theory of the labor market in which a decrease in employer competition, charac-
terized by fewer firms per worker, drives the decline in worker mobility and wages. A finite
and decreasing number of employers exert market power by excluding their offers from the
outside options of their employees. This reduces the value of workers’ outside options and,
consequently, their wages and transitions across employers. I quantify the model to explain
the long-run decline in worker mobility and wages and examine its cross-sectional implica-
tions.
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1 Introduction

Recent studies have documented a secular rise in employer market power in the US econ-
omy.1 This upward trend is often viewed in conjunction with concurrent long-run shifts
in labor market outcomes, such as the stagnation of median wages and a decline in the la-
bor share of income.2 In this paper, I examine the relationship between employer market
power and wages by exploring another macroeconomic aggregate that has experienced a
decline in recent decades: employer-to-employer transitions.3 Notably, Figure 1 illustrates
the simultaneous downward trends in wages relative to productivity and employer-to-
employer transition rates, which coincide with a long-run decrease in the number of firms
per worker in the US economy.

Using a random-search model of the labor market, I demonstrate that an increase in
employer market power, characterized by a diminishing number of firms per worker, cur-
tails the alternative employment opportunities or outside options available to workers.
This, in turn, has a wage-suppressing effect and limits workers’ opportunities to quit for
better offers. Overall, the model predicts that a decreasing number of firms per worker in
the relevant labor market of workers is associated with a slowing in wages and a decline
in transitions across employers.

The theoretical predictions of the model can be seen in the light of a recent empirical
finding that aggregate real wages of the US economy covary muchmore strongly with the
job-finding rate of the employed, rather than the unemployed, both of which act as a chan-
nel for transmission of labor demand (Moscarini and Postel-Vinay, 2017; Karahan et al.,
2017). The job-finding rate of the employed, which manifests in the pace of employer-
to-employer transitions, reflects how intensely firms compete for employed workers. In
this context, the increasing market power of firms leads to reduced competition among
employers. Evidence of this has been documented in the form of lower outside offers for
workers in more concentrated labor markets (Caldwell and Danieli, 2023; Schubert, Stans-
bury, and Taska, 2022), as well as the growing prevalence of anti-competitive practices
such as non-compete covenants and no-poaching agreements enforced by firms (Krueger
and Ashenfelter, 2018; Starr, Prescott, and Bishara, 2021). These factors suggest that di-
minished employer competition can potentially limit the extent of labor reallocation to
more productive and higher-paying jobs across the job ladder, thereby resulting in a de-

1See Manning (2021) for a comprehensive review of the current state of the literature.
2See, for example, Autor et al. (2020), and De Loecker, Eeckhout, and Unger (2020) documenting an

increase in product and employer market power and exploring its implications on declining labor share.
3See evidence of a long-run decline in labor market dynamism, and particularly employer-to-employer

flows starting from the late 1990s in Hyatt and Spletzer (2016); Molloy et al. (2016); Fujita, Moscarini, and
Postel-Vinay (2023).
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Figure 1: Worker Mobility, Wages and Firms Per Worker, 1985-2019
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(c) Firms Per Employed Worker
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Notes: Bureau of Labor Statistics, Current Population Survey, and Business Dynamics Statistics, 1985-2019.
Firms per worker are the ratio of annual stocks of the number of firms and employees. Post-1995 Employer-
to-Employer (EE) transition rates are quarterly averages ofmonthly flows from Fujita, Moscarini, and Postel-
Vinay (2023) who use the Current Population Survey and correct for missing observations after a survey
methodology change in 2007. Pre-1995 Employer-to-employer transition rates are quarterly flows expressed
as monthly rates (Diamond and Şahin, 2016). Wages are expressed as a quarterly index of hourly compen-
sation deflated by the implicit price deflator. Labor productivity is a quarterly index of output per hour
deflated by the implicit price deflator. Wages and productivity are measured for the non-farm business sec-
tor. Figures (a) and (b) plot 4-quarter moving averages.

cline in average wages in the economy. This raises the question: To what extent can exist-
ing models of the labor market, with on-the-job search linking job-to-job flows to average
wages in equilibrium, quantitatively explain the aggregate decline in the two outcomes
resulting from decreasing competition among firms for workers?

I address this question by building a tractable model of the labor market that accounts
for the effect of firm market power on inter-firm competition, equilibrium worker mobil-
ity, and wage behavior. In the model, unemployed and employed workers sample jobs
from firms that are heterogeneous in productivity. On-the-job search prompts firms to
compete with one another for employed workers, resulting in poaching behavior and an
endogenous job ladder. As workers climb the job ladder, they sort themselves into more
productive firms, deriving higher value from successive employment matches. Wages
are determined by the sequential auctions framework of Cahuc, Postel-Vinay, and Robin
(2006), where employed workers trigger competition between their current and poaching
employers. This results in a wage that is determined by workers’ outside offers and the
joint value of the employment match. A more lucrative outside offer grants the worker
more leverage in the wage negotiation process, resulting in the worker getting a higher
share − and the firm a lower share − of the joint match value.

The pace at which workers climb the job ladder andmatch withmore productive firms
is a function of search frictions and firm competition in the labor market. The latter is gov-
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erned by two ingredients: First, the model assumes a finite number of firms rather than
an infinite continuum of atomistic firms. As a result, the job offer distribution becomes
discrete, with each firm holding a non-zero share of vacancies. Decreasing the total num-
ber of firms in the economy increases the vacancy share of each individual firm, granting
them greater weight in the job offer distribution.

Second, employers exclude their offers from the outside options available to their em-
ployees, similar in spirit to Jarosch, Nimczik, and Sorkin (2023). When an employed
worker contacts an outside firm, it triggers competition between the incumbent and the
poaching employers for the worker’s services. Consequently, the worker and the poten-
tially winning employer negotiate a wage that is a function of the foregone offer made
by the losing employer–the worker’s outside option. A higher offer from the losing firm
gives the worker more leverage in the wage negotiations, compelling the winning firm to
match that value. However, the foregone outside offer contains the value derived from
the option of searching on-the-job and matching with the winning firm. This means that
the winning firm competes with its own future offer through the continuation value of the
worker’s outside option. By eliminating such an offer, the worker’s outside option dimin-
ishes, exerting downward pressure on the negotiated wage and providing the winning
firm with greater leverage in the negotiations.

The model is calibrated to fit key moments of the 1985-90 US labor market. As part of
the calibration, I show that the model can reproduce empirically observed labor market
flows, including employer-to-employer transitions and those into and out of employment,
as well as measures of wage dispersion and wage growth of job stayers in the economy. I
then undertake the key counterfactual exercise: I vary the number of firms in the economy
and find that employer-to-employer flows and average wages (normalized by productiv-
ity) increase with the level of firm competition in the economy. Further, as more firms
crowd the market, employers compete more intensely to retain workers, leading to an in-
crease in the wage growth of job stayers. At the same time, workers are more likely to
reach the upper limit of their maximumwage before making a job switch, leading to a fall
in the wage growth of job switchers.

I decompose the equilibrium links of the model into two main channels: First, the
mega-firm channel, which emerges as a result of the decrease in the number of firms caus-
ing the offer distribution to concentrate among a small number of large firms. Workers in
these firms experience a reduced job-finding probability as better options outside their
firm become scarce. Secondly, the retaliation channel comes into play, preventing workers
from re-matching with firms they are currently bargaining with. The retaliation channel
interacts with the mega-firm channel, amplifying the wage response to a decline in the
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number of firms.
I evaluate themodel by comparing it to the 2012-17 US labormarket. This involves sim-

ulating a decline in the number of firms per worker in the model to match the observed
data. The results show that the model can account for nearly two-thirds of the decline in
employer-to-employer transitions and one-fifth of the decrease in wages relative to pro-
ductivity from 1985 to 2017.

Furthermore, to evaluate the model’s predictions in the data, I first examine the be-
havior of the model-relevant measure of labor market competition. Using the data on
firms and workers from the Business Dynamics Statistics (BDS) of the US Census Bureau,
I document a persistent and long-run decline in the firm-to-worker ratio for the aggregate
US economy (Figure 1). I further document that the decline is pervasive within states,
industrial sectors, and state-by-sector pairs, ruling out the hypothesis of it being a conse-
quence of compositional changes that have taken place over the same period. I show that
the firms per worker co-move strongly with employment concentration measures for the
super-sectors of the US, both over time and across industries.

Next, I explore the link between the evolution of firms per worker and the model-
relevant outcome variables: employer-to-employer transitions, wages relative to produc-
tivity, and the wage growth associated with continuous job spells and job switches. To
examine this link in the cross-section of US sub-markets, I combine data in the BDS with
publicly available data on worker mobility from the Longitudinal Employer-Household
Dynamics (LEHD), payroll share of gross value added from the Bureau of Labor Statis-
tics (BLS), worker-firm demographics from the Quarterly Workforce Indicators (QWI) of
the LEHD, as well as micro-data from the Survey of Income and Program Participation
(SIPP).

In line with the predictions of the model, three findings are noteworthy. First, I doc-
ument a positive correlation between the number of firms per worker and employer-to-
employer transition rate across local labormarkets defined asMetropolitan Statistical Area
(MSA)-sector pairs, using a rich set of fixed effects and controlling for workforce compo-
sition by the worker and firm demographic groups. Second, I document a positive rela-
tionship between the number of firms per worker and the payroll share of value-added,
which proxies wages as a share of productivity across disaggregated industries. Third, the
number of firms per worker correlates negatively with wage growth associated with job
switches and positivelywith thewage growth of job stayers, controlling for individual and
job-specific characteristics. Overall, the empirical evidence on the employer-to-employer
transition rate, wage growth, and average wage levels is consistent with the model’s pre-
dictions.
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Related literature. The theoretical and empirical findings of this paper contribute to
the large literature exploring the role of employermarket power on labormarket outcomes.
Two studies are closely related to the model presented in this paper. First, Jarosch, Nim-
czik, and Sorkin (2023) consider finite firms in a standardDiamond-Mortensen-Pissarides
model where firms can remove their vacancies from the worker’s outside options from the
state of unemployment. The second, Schubert, Stansbury, and Taska (2022), presents a
framework with finite firms in which outside options of workers are a function of market
concentration. Both studies predict that wages are inversely related to market concen-
tration. The model presented in this paper differs from these studies by allowing firms to
remove their vacancies from theworker’s outside options from the state of unemployment
and employment. Themodel further introduceswage bargaining in the tradition of Cahuc,
Postel-Vinay, and Robin (2006), between the poaching firm, the incumbent firm, and the
worker who engages in on-the-job search. This allows the model to offer a novel market-
power-based explanation for the falling employer-to-employer transition rate, apart from
falling wages, which has been the focus of much of the current literature.4

Other theoretical models studying imperfect competition in the labor market and
its implications on average wages and labor share have introduced firm market power
through different channels. Berger, Herkenhoff, and Mongey (2022) develop a general
equilibrium model of labor market oligopsony where a finite number of differentiated
firms in local labor markets face upward-sloping supply curves and compete strategi-
cally. Their model predicts that firms with larger market shares face smaller labor sup-
ply elasticity and pay wages that represent more considerable markdowns relative to the
marginal revenue product of labor. Relatedly, Azkarate-Askasua and Zerecero (2022) de-
velop a general equilibrium model where employers face an upward-sloping labor sup-
ply curve, and wages are collectively bargained between employers and workers unions.
Both forces create wage distortions relative to the marginal revenue product, and their re-
moval leads to gains in output, labor share, and welfare. Gouin-Bonenfant (2022) builds
a search model where the key source of market power is productivity dispersion among
firms. High-productivity firms are isolated from wage competition and can grow faster
by poaching workers from other firms. The model predicts a fall in aggregate labor share
in response to an increase in productivity dispersion driven by the reallocation of value-
added towards high-productivity firms. Contemporaneous work by Berger et al. (2023)
introduces non-wage amenities and finite firms in a wage bargaining model with on-the-

4On-the-job search among employed workers is motivated by recent work by Faberman et al. (2022) who
show not only that on-the-job search is ubiquitous but also that employed workers receive more solicited
and unsolicited employer contacts than unemployed workers.
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job search to study the effect of employment-basedHerfindahl Hirschman Indices (HHIs)
on job flows, wages, and wage inequality in Norway. They find a negative correlation be-
tween HHIs and job flows and wages, in line with the results presented in this paper.
Gottfries and Jarosch (2023) develop a wage posting model with finite firms that can im-
pose non-compete agreements on their employees. They find that non-competes have a
detrimental impact on wages due to the reduction in competition.

The empirical strand of this literature documents the trends in employer market power
in the aggregate and local labor markets and estimates its effects on average wages. Yeh,
Macaluso, and Hershbein (2022) measure employer market power through plant-level
wage markdowns and find evidence of its consistent rise from the early 2000s. Brooks et
al. (2021) use plant-level data for the manufacturing sectors of India and China and find
evidence of monopsony power and its wage-suppressing effect. Other studies compute
concentration measures such as employment share of the largest firms in an industry, as
well as HHIs in employment (Autor, Dorn, Katz, Patterson, and Van Reenen, 2020; Benm-
elech, Bergman, and Kim, 2020; Rinz, 2022), hires (Marinescu, Ouss, and Pape, 2021), and
vacancies (Azar et al., 2020; Azar, Marinescu, and Steinbaum, 2020). These studies doc-
ument a negative correlation between the relevant measure of market concentration and
average wages. Finally, two recent and related studies also document the relation between
firmmarket power and workers’ outside options. First, Caldwell and Danieli (2023) mea-
sure the cross-sectional competition faced by a worker from other similar workers across
jobs to arrive at the worker’s relevant outside options. They find a positive correlation be-
tween outside options of German workers and their wages. Second, Schubert, Stansbury,
and Taska (2022) compute a measure of outside options by examining the availability of
local jobs outside a worker’s occupation. They document a positive and significant effect
of an increase in the value of job options outside a worker’s occupation on wages.

Overall, this paper contributes to the empirical strand of this literature by proposing
a new measure of firm market power that validates the measure of competition in the
proposed model. I demonstrate that the firms per worker across local labor markets re-
late closely to measures of employment concentration. I then document a positive link
between firm competition and employer-to-employer flows in the cross-section of MSA-
sector pairs. Themeasure of firm competition proposed here also reaffirms the findings of
the current literature, which has emphasized the effect of market power on wages, much
like its theoretical counterpart.

The rest of the paper is organized as follows. Section 2 develops the model of the labor
market and discusses its key features. Section 3 describes the calibration methodology
and examines the model fit. It provides further details of the qualitative and quantitative
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implications of the model. Section 4 presents an empirical examination of key predictions
of the model on wages and job transitions. Section 5 concludes.

2 Model

This section builds an equilibrium framework of the frictional labor market with sev-
eral features to establish the link between firm competition, worker mobility, and wages.
Employer-to-Employer (EE) quits are enabled through workers searching on-the-job and
firms poaching workers from each other. Wages respond to the value of the worker’s cur-
rent and prior match. Finally, channels to decrease inter-firm competition are introduced,
including finite firms that can retaliate against potential employees.

2.1 Agents

The continuous-time economy is populated by a unit continuum of homogeneous and
infinitely lived workers. Each worker has linear preferences over the single good in the
economy. Workers can either be employed or unemployed. Unemployed individuals de-
rive utility from leisure, while employed workers provide a unit of labor to firms and
receive a wage, denoted as ω.5

There exists a finite number of firms in the economy that are ex-ante heterogeneous in
productivity. The total number of productivity levels is fixed to N , and firm productivity
is denoted by θi ∈ {θ1, ..., θN}. It is assumed that productivity is uniformly distributed
across firms, which allows for firms to be ranked by their productivity level, such that
θ1 < · · · < θN . At each productivity level, there are n(θi) ≡ ni number of homogeneous
firms. Thus, the total number of firms in the economy is∑N

i=1 ni.
Each period, firms offer jobs that can either be filled byworkers or remain vacant. Filled

jobs grant firms the flow value of the output produced, less wages paid, while vacant
postings provide firms with no value.

The common discount rate of both agents is γ ∈ (0, 1).

2.2 Matching

The matching between firms and workers in this economy is characterized by a random
search process. Specifically, unemployed and employed workers contact firms with ex-
ogenous probabilities λ0 and λ1, respectively. All workers sample jobs from an exogenous

5The exposition of the model is related to Jarosch (2023).

7



and discrete job offer or sampling distribution F , with mass f . Thus, the probability of
an offer or vacancy arising from any firm with a productivity level θi is ni·f(θi)∑N

i=1 nif(θi)
. This

probability represents the product of the number of firms at productivity level θi, and the
probability of receiving an offer from an individual firm at θi, expressed as a share of all
offers. I normalize the probability mass function f(θi) to ensure that∑N

i=1 nif(θi) = 1.
On matching, firms and workers produce output that is a function of the firm’s pro-

ductivity, y(θi). Matches are destroyed at an exogenous separation rate δ, in which case
the worker flows into unemployment, and the job becomes vacant.

2.3 Wage Bargaining

When workers and firms match, they engage in wage negotiations determined by the se-
quential auction framework by Cahuc, Postel-Vinay, and Robin (2006). This framework
proposes that if an employed worker contacts an outside firm, competition ensues be-
tween the incumbent and the poaching firms for the worker’s labor services. While the
lower productivity employer offers the maximum pay it can afford by passing on the en-
tire output of the match to the worker, the higher productivity employer can outbid this
offer because it produces more. The resulting outcome is that the worker accepts the of-
fer of the firm bidding the higher value. This protocol ensures that the bargained wage
implements a split of the match value between the worker and firm, such that the worker
receives a share equal to the average of their outside option and the joint match value. In
what follows, I describe the wage negotiation protocol by way of an example, first, in the
standard infinite firm setting and thereafter, in the finite firm setting.6

Consider a worker who is employed at an incumbent firm of productivity θi ∈
{θ1, ..., θN}, and who previously worked at another firm with productivity θj ≤ θi. I refer
to the value the worker derives from the firm she previously negotiated wages with as
her outside option. Wages, denoted by ω(θi, θj), are negotiated between the incumbent
firm-θi and the worker based on her outside option at firm-θj . Denote the worker’s value
as W (θi, ω(θi, θj)) ≡ W (θi, θj), firm’s value as J(θi, θj), and the joint value of the match as

6The infinite horizon altering offers game that is the basis of the sequential auctions framework is de-
scribed in Cahuc, Postel-Vinay, and Robin (2006). Under the assumptions of costless renegotiation and
complete information, the timing of the game is summarized as follows: First, the incumbent and poach-
ing firms make simultaneous wage offers. Second, the employed worker either keeps the offer on hand or
chooses the higher wage offer made in the first stage. Third, if the worker chooses the higher wage offer, she
makes a counteroffer. In doing so, she uses the chosen offer as a threat point to renegotiate the offer made by
the firmwith the lower bid. This alternating offers continues between the worker and firms over the infinite
horizon. As neither firms bid a wage higher than the output they can produce, the higher productivity firm
immediately offers a wage that grants the worker a value that is at least as high as the maximum value that
the lower productivity firm can offer.

8



V (θi) = W (θi, θj)+J(θi, θj).7 Suppose the worker gets an offer on-the-job from a poaching
firm of productivity θx. This triggers competition between the incumbent and poaching
firms over the worker’s labor services. The outcome of the game depends on which firm
is more productive and can offer the worker a higher value.

Three cases are possible. First, consider the case when θx ≥ θi. Then, to retain the
worker, the incumbent firm-θi revises the worker’s wage upwards. The maximum wage
firm-θi is willing to offer is the entire match output, y(θi). As a result, wages are de-linked
from the worker’s previous employment at θj , and are now denoted as ω(θi, θi) = y(θi).
The new wage grants the worker the entire match value, W (θi, θi) = V (θi), at firm-θi.
The worker uses this offer of the incumbent firm as her new threat point when bargain-
ing wages with the poaching firm-θx. The resulting wage offered by the poaching firm,
ω(θx, θi), leaves the worker with a value equal to her new outside option, W (θi, θi), and
a share of the increment in the joint match value that results from the worker quitting
the less-productive incumbent firm, and joining the more-productive poaching firm. This
share is denoted by α ∈ [0, 1] and is an exogenous parameter governing the worker’s bar-
gaining power in the match:

W (θx, θi) = W (θi, θi) + α ·
(
V (θx)−W (θi, θi)

) (1)

The equation above shows that the value offered to the worker by the poaching firm-θx,
W (θx, θi), promises at least asmuch value as themaximumvalue offered by the incumbent
firm-θi,W (θi, θi). The worker, therefore, accepts the offer of the poaching firm and makes
a job-to-job transition from firm-θi to firm-θx.

Next, consider the casewhen θj < θx < θi. Now, the poaching firmoffers theworker the
maximum wage equal to the potential match output y(θx), which comprises the worker’s
new threat point in place of the one at firm-θj . This triggers renegotiation of the current
wage between theworker and the incumbent firm. The resultingwage, ω(θi, θx), offered by
the incumbent firm-θi re-splits the match value, which leaves the worker with her revised
outside option at firm-θx, W (θx, θx), and α−fraction of the incremental match value from
forgoing the offer of the poaching firm:

W (θi, θx) = W (θx, θx) + α ·
(
V (θi)−W (θx, θx)

) (2)

The worker receives a value from firm-θi that is at least as high as the one offered by the
poaching firm. She, therefore, accepts the revised wage offer and stays at her current

7The joint value of amatch V is not a function of a worker’s prior employment spell, and only depends on
the current employer’s productivity. This will be clear from the value functions defined in the next section.
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employer.
Finally, if θx ≤ θj , then the maximumwage offered by the poaching firm cannot exceed

the worker’s current outside offer from θj . Therefore, it is not in the worker’s interest to
trigger a renegotiation gamewith the current employer. In this case, the worker stays with
the same employer at an unchanged wage.

In summary, when aworker is employed at a firm-θj and receives an offer fromapoach-
ing firm-θi where θi ≥ θj , the wage negotiation between the worker and firm-θi competes
with the maximum value the worker can receive from firm-θj . This maximum value in-
cludes the flow value derived from the match at firm-θj , represented by match output
y(θj), and the option value of on-the-job search from firm-θj .

In an infinite firm setting, on-the-job search from firm-θj encompasses the possibility
of receiving offers from both firm-θi and firm-θj . In other words, when the worker bar-
gains with the poaching firm-θi using an offer from firm-θj as their outside option, the
worker’s set of potential on-the-job offers at firm-θj contains, with non-zero probability,
two unlikely matches. First, the possibility of a match with the incumbent firm-θj in the
next period. This means that while employed at firm-θj , the worker can receive an offer
from the same firm. Secondly, the possibility of a match with the poaching firm-θi in the
next period. In other words, while the worker negotiates wages with the poaching firm-θi
using the offer from firm-θj as their threat point, firm-θi competes with the possibility of
the worker sampling its offer again in the future, which lies within the worker’s outside
option.

In a finite firm framework where each firm holds a non-zero share in the offer distribu-
tion, I introduce two assumptions to eliminate the aforementioned offers. First, I assume
that a worker cannot receive an on-the-job offer from their own firm. Consequently, a
worker employed at a firm with productivity-θi can receive offers from any firm outside
that productivity level, denoted as θ−i, as well as from the remaining ni − 1 “peer” firms.
These peer firms are defined as firms operating at the same productivity level as the in-
cumbent firm-θi. If the worker receives an offer from one of the peer firms at θi, the incum-
bent and poaching firms compete and offer the same value to the worker, rendering the
worker indifferent between the two options. In such cases, I assume that the worker faces
an exogenous probability ν of transitioning from the incumbent to the poaching firm.8

Second, I assume that while bargaining with the worker, the poaching firm-θi has the
ability to retaliate against the worker by eliminating its future offer from the worker’s out-

8To the extent that mobility across employers is costly, yet a substantial fraction of job switches tend to
occurwithoutwage increases, the probability of switching to a peer firmdespite both firmsmaking the same
wage offer can be micro-founded by introducing non-wage amenities in the model as in Sorkin (2018); Hall
and Mueller (2018); Mercan and Schoefer (2020).
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side option at firm-θj . In other words, if the wage negotiation between the worker and
firm-θi fails and the worker resorts to her outside option at firm-θj , she does not retain
the option value of re-matching with firm-θi through on-the-job search at firm-θj . Conse-
quently, this discounting of theworker’s outside option impacts the resultingwage negoti-
ated between the retaliating firm-θi and theworker. Thus, in the spirit of Jarosch, Nimczik,
and Sorkin (2023), I assume that firms prohibit their previously matched applicants from
reapplying to them from their outside option.

In the context of retaliation, a few points are noteworthy. First, in equilibrium, there
is no penalty imposed on the worker as the negotiation between the worker and the re-
taliating firm-θi never breaks down. Despite this, the mechanism of retaliation affects the
equilibrium wage outcomes of the model. Second, I assume that the penalty imposed on
theworker only lasts for a single employment spell. In otherwords, the retaliatedworker is
prevented from receiving an offer fromfirm-θi onlywhile she is employed at firm-θj . How-
ever, once the worker’s employment spell at firm-θj ends, firm-θi no longer remembers or
enforces the retaliation. This assumption of limited memory by firms is made to ensure
the tractability of the model. Finally, it is important to highlight that during wage negotia-
tions between the incumbent and poaching firms, only the higher productivity firm-θi has
the incentive to retaliate against the worker. This is because the lower productivity firm-θj
chooses to make its best offer as attractive as possible in order to outbid its competitor and
secure the worker’s acceptance. Consequently, it is sub-optimal for firm-θj to offer a lower
wage that involves retaliation.9 However, it is optimal for the higher-productivity firm-θi
to retaliate against the worker as it offers a value that exceeds the best offer of the losing
firm.10

To account for retaliation, when negotiating wages with firm-θi, the worker’s outside
9To illustrate this point, the sequential auctions framework follows a similar pattern as in the case of

infinite firms. Initially, both firms simultaneously make offers to the worker. The worker can then either
accept the offer at hand or choose the higher offer of the two. If the worker chooses the latter, she makes
a counteroffer to the lower-value bid of the losing firm, using the higher-value bid of the winning firm
as a threat point. If the losing firm were to retaliate against the worker, the threat point would include a
continuation value from the winning firm that excludes an on-the-job offer from the losing firm.
Similar to the infinite firm setting, the outcome of the game is that the higher productivity firm outbids

the lower productivity firm’s offer. As such, retaliation by the lower productivity firm is not credible, and it
is optimal to refrain from retaliating and instead offer the worker the full match value. On the other hand,
the higher productivity firm opts to retaliate. It immediately provides the worker with a value that is at least
as high as the maximum value afforded by the losing firm.

10Note that in the context of homogeneous workers, it is optimal for the higher-productivity firm to retali-
ate against an applicant by not making a future offer if the retaliated applicant is not the only applicant who
matches with the firm. I assume that the probability of the firmmatchingwith a solo applicant and the latter
being the retaliated applicant is zero. Jarosch, Nimczik, and Sorkin (2023) compute this probability using
data from Austria and find the likelihood of a worker being the only applicant for a job to be approximately
zero.
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option is now represented as W̃ (θj, θj, θi). The latter is the match value offered by firm-
θj that no longer includes the option value of matching with firm-θi through on-the-job
search at firm-θj . In light of this, I re-specify the wage setting equations 1 and 2 as follows:

W (θi, θj) = W̃ (θj, θj, θi) + α ·
(
V (θi)− W̃ (θj, θj, θi)

) (3)

Equation 3 shows that the value offered by firm-θi to a worker with an outside option at
firm-θj ≤ θi contains two terms. The first is the joint value offered by firm-θj , keeping
track of the retaliation the worker will face by firm-θi should she accept firm-θj’s offer.
The second term is the increment in joint value due to the worker switching from firm-θj
to firm-θi, weighted by the worker’s bargaining power parameter. This expression is an
outcome of Nash bargaining between the worker and the poaching firm and is formally
derived in the Appendix A1.

Finally, the discussion above can be generalized to unemployed workers. The model
allows firms to retaliate against workers who negotiate wages from the state of unemploy-
ment. The unemployed worker receives a flow value from leisure and the option value of
searching from unemployment. I assume that the retaliating firm removes its future of-
fer from the unemployed worker’s continuation value, thereby reducing the option value
of job search from the state of unemployment. As in the case of the employed worker
counterpart, I assume that the retaliation only lasts for one spell of unemployment.

To see this, suppose an unemployed worker matches with firm-θi. Denote the outside
option of such a retaliated unemployed worker who does not receive the option value
from matching again with firm-θi as Ũ(θi). Then the reservation wage negotiated by the
unemployed worker and firm-θi solves:

W (θi, θu) = Ũ(θi) + α ·
(
V (θi)− Ũ(θi)

) (4)

Here θu is the unknown reservation productivity level that leaves the worker indifferent
between staying unemployed or employed at firm-θu. The value received by aworker hired
from unemployment by firm-θi is a linear combination of her outside option from unem-
ployment, excluding the option value of matching with firm-θi, and the net increment in
joint value as a result of the match.

In the next section, I describe the value functions introduced thus far.
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2.4 Value Functions

This section formalizes the recursive equations of the model. For an employed worker at
firm-θi with an outside option at firm-θj , the value function is denoted by:

(γ + δ)W (θi, θj) = ω(θi, θj) + δU

+ λ1

(
N∑

x=i+1

(
W (θx, θi)−W (θi, θj)

)
nxf(θx)

+
i−1∑

x=j+1

(
W (θi, θx)−W (θi, θj)

)
nxf(θx)

+

(
W (θi, θi)−W (θi, θj)

)
(ni − 1)f(θi)

)
(5)

The employed worker receives a flow payoff equal to the current wage, ω(θi, θj). In
the next period, the worker may exogenously separate from the firm with probability δ

and flow into unemployment, receiving a value U . If she stays employed, she may contact
and sample an offer from a firm with productivity θx, with probability λ1nxf(θx). If the
productivity of the new firm-θx > θi, then the worker makes a job-to-job transition to firm-
θx. This results in a value,W (θx, θi), reflecting that the worker is employed at firm-θx and
her wage is benchmarked against her prior employer-θi. If θi > θx > θj , the worker gets
a within-job wage revision, and now her value,W (θi, θx), reflects her new outside option,
θx, whereas the current employer remains the same. If the worker samples from any one
of the remaining (ni − 1) peer firms at productivity θi, she is indifferent between staying
at the incumbent firm or joining the poaching firm, as both firms offer the same value.
Her value function is not affected by whether she is a job stayer or switcher because she
realizes the maximum value from the match, W (θi, θi), in both cases. Finally, with the
remaining probability, she does not match with any firm or matches with a firm that is
less productive than θj or matches with her own employer again – in all such cases, her
value remains unchanged.

Now suppose a worker who is employed at θi, gets an on-the-job offer from some firm-
θh > θi. Then the worker’s outside option at firm-θi, denoted by W̃ (θi, θi, θh) ≡ Ṽ (θi, θh),
keeps track of retaliation by the firm at θh. This value includes the entire match value from
firm θi without the option value of matching at firm-θh through on-the-job search. This
can be expressed as:
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(γ + δ)W̃ (θi, θi, θh) = y(θi) + δU

+ λ1

(
N∑

x=i+1

(
W (θx, θi)− W̃ (θi, θi, θh)

)
nxf(θx)

−
(
W (θh, θi)− W̃ (θi, θi, θh)

)
f(θh)

+

(
W (θi, θi)− W̃ (θi, θi, θh)

)
(ni − 1)f(θi)

)
(6)

To retain the worker, firm-θi bids up the wage to its maximum level, such that the
worker gets the entire match output, y(θi). The option value of search excludes the possi-
bility of sampling a job from a firm with productivity θh. This is shown in the third line
where the worker’s value from a firm at θh is removed from the potential offers that she
can receive on the job. Note that the preclusion of firm-θh’s offer only lasts through the
worker’s employment spell at firm-θi. If the worker joins any other firm or gets matched
with a firm at the same productivity, her value function is no longer W̃ but W and does
not keep track of firm-θh. This is due to the limited memory assumption of the firm de-
scribed in the last section. This simplifying assumption reduces the dimensionality of the
value function by preventing the need to keep track of the full history of precluded firms
from the worker’s offer distribution. Finally, if the worker gets an offer from any of the
remaining firms at θi, she is released from the retaliation of firm-θh and receives a value
ofW (θi, θi), irrespective of whether she chooses to stay at the incumbent firm or moves to
the poaching firm.

The value function of an unemployed worker satisfies:

γU = z + λ0

N∑
x=u+1

(
W (θx, θu)− U

)
nxf(θx) (7)

The unemployedworker receives a flow payoff from leisure, z, andwith probability λ0,
contacts a firm. If that firm is more productive than an unknown threshold productivity
level, θu, the worker accepts the job and flows into employment.11 With the remaining
probability, including not receiving a job offer or receiving one from a firm at or below θu,
the worker remains in the state of unemployment.

11θu is the reservation productivity level, i.e., the level at which the worker is indifferent between being
unemployed or employed at a firm with that productivity and receiving the entire match value. Thus, U =
W (θu, θu). The unemployedworker accepts all offers from firms that are more productive than θu. Note that
θu is an unknown object of the model, and I assume a single firm at the reservation productivity level, i.e.,
nu = 1. Being the least productive firm, it cannot exclude its offer from the outside option of any worker.
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Suppose the unemployed worker matches with some firm-θh > θu. Then, to be consis-
tent with her employed counterpart, the worker’s outside option precludes the vacancy of
that firm. The outside option can be expressed as:

γŨ(θh) = z + λ0

(
N∑

x=u+1

(
W (θx, θu)− U(θh)

)
nxf(θx)−

(
W (θh, θu)− U(θh)

)
f(θh)

)
(8)

The outside option of the worker hired from unemployment by firm-θh is similar to the
value from unemployment defined in equation 7, except it excludes a vacancy from firm-
θh in the option value of job search from unemployment.12

The value of a filled job to a firm at θi, with a worker whose outside option is at a firm
at θj satisfies:(

γ + δ + λ1

( N∑
x=i+1

nxf(θx) + (ni − 1)f(θi)

))
J(θi, θj)

= y(θi)− ω(θi, θj) + λ1

i−1∑
x=j+1

(
J(θi, θx)− J(θi, θj)

)
nxf(θx)

(9)

The flow payoff to the firm from a match is equal to the output, y(θi), less the wages
paid to the worker. If the firm and worker separate in the next period, either exogenously
or through worker-quits, the job becomes vacant, and the firm’s continuation from the job
is zero. If the firm and worker do not separate, and the worker samples an offer from a
firm that is less productive than θi, but more productive than θj , then the match value is
re-split, and the firm receives a revised share, J(θi, θx), reflecting the new outside option
of the worker. If the worker contacts another firm at the same productivity θi, then the
worker gets the entire match value and the firm gets zero value. Finally, if the worker does
not contact a firm that is more productive than firm-θj , then the firm’s continuation value
remains the same.13

As outlined in Appendix A1, Nash bargaining implies that the bargained wage,
ω(θi, θj), solves equation 3. When employed at firm-θi with an outside option at firm-θj ,

12An outcome of the model is that Ũ(θu) = U , i.e., exclusion of an offer from the firm at θu is immaterial
for the unemployed worker.

13Throughout the model, the value to the firm of keeping a job opening vacant is assumed to be zero. This
is akin to a free-entry condition. With this assumption, the entire model can be solved without specifying
the firm’s value from keeping a job-opening vacant. In a version of this model with an endogenous vacancy
creation decision, this condition can be achieved by assuming that the cost of posting a vacancy to a firm
is firm productivity-specific as in Jarosch, Nimczik, and Sorkin (2023). See Berger et al. (2023) and Gouin-
Bonenfant (2022) for the effect of firm competition on vacancy posting. See Lise and Robin (2017) and
Bagger and Lentz (2019) for vacancy creation in the Postel-Vinay and Robin (2002) framework.
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the worker receives a value that is a weighted average of the match value at θi,W (θi, θi) =

V (θi), and the outside option at θj , W̃ (θj, θj, θi). The model can be solved by combining
equations 3-9. The model solution is described in the next section.

2.5 Solving the Model

The value functions in equations 5-9, alongwith solutions toNash bargaining in equations
3 and 4 can be expressed in terms of a functional equation − the joint value function −
defined as the total match value between a worker and firm, Ṽ (θi, θh),∀h ≥ i. When h = i,
the joint value takes the form, Ṽ (θi, θi) = V (θi). The value from unemployment can also be
expressed in terms of joint value at firm-θu, U = V (θu). Thus, the model can be expressed
in terms of the following two equations:

(γ + δ)Ṽ (θi, θh) = y(θi) + δV (θu)

+ λ1

(
N∑

x=i+1

(
(1− α)Ṽ (θi, θx) + αV (θx)− Ṽ (θi, θh)

)
nxf(θx)

− α

(
V (θh)− Ṽ (θi, θh)

)
f(θh) +

(
V (θi)− Ṽ (θi, θh)

)
(ni − 1)f(θi)

)
,∀h ≥ i

(10)

y(θu) = z + (λ0 − λ1)

(
N∑

x=u+1

(
(1− α)Ṽ (θu, θx) + αV (θx)− V (θu)

)
nxf(θx)

)
(11)

The left-hand side of the equation 10 is the present discounted joint value of a match
between a worker and firm-θi, which does not include an on-the-job offer for the worker
from the more productive firm-θh. The first term on the right-hand side captures the flow
payoff from thematch to the worker and firm, y(θi). The second term captures the event of
the match coming to an end and the worker receiving the net value from unemployment.
The third and fourth terms capture the event of the worker receiving an outside offer from
any firm that is more productive than θi, except one firm at productivity θh, that poaches
the worker away from firm-θi. The worker receives a value equal to the weighted average
of the joint values from the poaching and incumbent firms, net of the value lost at the
incumbent firm. The last term captures the possibility of the worker receiving an offer
from any of the remaining firms at the same productivity level as the incumbent firm
and effectively getting released from the penalty imposed by firm-θh. Finally, the match
continues on its current terms if the worker does not receive a job offer or receives one
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from the incumbent firm at θi.
Equation 11 provides a numerical expression for the unknown reservation productiv-

ity level, θu. The output from the reservation productivity level, y(θu), is a function of the
flow value from leisure, z, and the continuation value from employment at any firmmore
productive than θu. The latter is weighted by the difference between the job-finding rate
of the unemployed and employed.

The model can be fully summarized by equations 10 and 11 and two unknowns (Ṽ
and θu), making the system tractable. The algorithm for solving the model numerically is
detailed in Appendix A2. Finally, the equilibrium wage function is derived in Appendix
A3.

2.6 Labor Market Flows

The model is solved in steady state such that inflows from employment and unemploy-
ment balance. The laws of motion of employment and unemployment are derived in Ap-
pendix A4. Denoting the total stock of unemployed workers as u, the law of motion of
unemployment is:

δ(1− u) = uλ0

N∑
x=u+1

nxf(θx) (12)

Inflows to unemployment comprise separations of employedworkers, 1−u. Workers tran-
sition out of unemployment when they receive an offer from any firm with productivity
above their reservation productivity level.

Denoting the total number of workers at a firm with productivity-θi as E(θi), the law
of motion of employment at such a firm-θi is given by:

uλ0f(θi) + λ1(1− δ)f(θi)

( i−1∑
j=u+1

njE(θj) + ν(ni − 1)E(θi)

)

= E(θi)

(
δ + (1− δ)λ1

( N∑
x=i+1

nxf(θx) + ν(ni − 1)f(θi)

)) (13)

The inflows to firm-θi are shown on the left-hand side of equation 13. The first term
represents inflows from unemployment to firm-θi. The second and third terms represent
inflows from employed workers who are not separated and match with firm-θi. Specifi-
cally, the second term represents inflows from firms with productivity less than θi. The
third term represents inflows from workers employed at peer firms at θi who make a job-
to-job switch with probability ν.
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The right-hand side shows the outflow of workers from firm-θi. The first term repre-
sents all the workers who flow out to unemployment due to the match breaking up. The
remaining terms capture job-to-job flows out of firm-θi, either to a more productive firm
or to the peer firms at θi.

2.7 Understanding the Model Mechanisms

By expressing the law of motion of employment, we can define the Employer-to-Employer
separations for firm-θi, denoted by EE−(θi), as:

EE−(θi) =E(θi)λ1(1− δ)

( N∑
x=i+1

nxf(θx)︸ ︷︷ ︸
vertical EE

+(ni − 1)f(θi)ν︸ ︷︷ ︸
horizontal EE

)
(14)

The expression provides several insights into the model’s mechanisms pertaining to the
effect of firm competition on EE transitions. First, unlike the standard infinite firm setting,
a model with finite firms distinguishes between vertical and horizontal EE transitions.
Vertical transitions represent upward movement on the job ladder, while horizontal ones
refer to moves to peer firms at the same productivity level.

Second, a reduction in the number of firms decreases EE transitions. In the extreme
case of a single firm in the labor market (i.e., the incumbent firm, ni = 1 and n−i = 0),
the worker can neither make vertical transitions nor horizontal ones as all vacancies arise
from the incumbent firm and by assumption, workers cannot receive an offer from their
own firm.

Third, changes in the number of firms affect horizontal EE transitions. This happens
because as the number of firms, n, at any productivity level changes, the vacancy share of
each firm, f(θ), adjusts to hold n · f(θ) fixed. In particular, a decrease in the number of
firms, ni, increases f(θi), causingEE−(θi) to decrease. This implies thatworkers employed
at larger firms face a lower probability of making EE transitions as a larger share of job
offers lie within the worker’s own firms, resulting in a smaller share of offers outside their
firm. In Section 3.2.1, I discuss this channel of the model further and term it the ‘mega-
firm’ channel – as the number of firms in the labor market decreases, each firm becomes
larger, and workers face a lower probability of transitioning out of their own firms.14

14In other words, in the model, changes in EE transitions emanating from varying the number of firms
are not productivity-enhancing moves up the job ladder but rather turnover across peer firms. To make
vertical moves responsive to changes in the number of firms would involve introducing other dimensions to
the job ladder, such as stochastic match-specific productivity that evolves during the match or job-specific
amenities.
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Finally, the assumption of retaliation has no impact on EE transitions in the model.
This happens because retaliation occurs in the off-equilibrium and does not affect realized
transitions in themodel. Recall that if aworker chooses the less productive firm’s offer over
the more productive firm’s offer, the latter retaliates by not allowing the worker to apply
for their vacancy in the next period. However, in equilibrium, the worker always chooses
the more productive firm’s offer, which means they are never prevented from making EE
transitions due to retaliation. Section 3.2.1 demonstrates the null effect of retaliation on
EE transitions.

Even though firm size and retaliation have distinct implications on EE transitions, they
work together to reinforce their effect on wages. This interaction leads to an amplified
wage response in the model. Appendix Equation A3 expresses wages as a function of the
equilibrium joint value functions of the model. The equation shows that the equilibrium
wage to a worker employed at a firm-θi, and having an outside option at a firm-θj ≤ θi,
reflects a flow and a continuation value. The flow value equals the weighted average of
the match output produced by the worker and firms-θj and θi. The continuation value
reflects the weighted average of the joint option value to the worker and firm when the
worker searches on-the-job from firms-θj and θi. The continuation value deducts the value
the worker receives from searching on-the-job from their current employer. This is the
compensating differential that the worker pays to their employer for being able to search
on the job and realizing a wage increase in the future.

The expression in equation A3 also sheds light on the model mechanisms of retaliation
and firm size pertaining to wages. A worker getting retaliated by firm-θi does not derive
the option value of matching with firm-θi while searching on-the-job from firm-θj . This is
shown in the second line of equation A3, which deducts the joint value of matching with
firm-θi from the set of outside offers the worker could receive at firm-θj . Further, the effect
of retaliation is amplified by firm size. The larger the size of the retaliating firm due to a
larger share of offers, f(θi), the higher the loss in wages due to retaliation. In section 3.2.1,
I examine the implications of firm size and retaliation on average wage levels and wage
growth of job stayers and switchers.

3 Quantitative Analysis

I solve the model described in the previous section and simulate an economy based on its
equilibrium outcomes. In this section, I first describe the calibration strategy to determine
the model’s parameters. This is followed by comparing the simulated moments at the
optimally chosen parameter values with their empirical counterparts to assess themodel’s
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fit. Finally, I show a counterfactual economy with the varying market power of firms and
evaluate the model’s qualitative and quantitative predictions.

3.1 Calibration

The model is calibrated at a monthly frequency, with the economy assumed to be in a
steady state. The model’s moments are targeted to match the long-run averages of em-
pirical moments for the US economy. Specifically, the model is calibrated to reflect the
economy from 1985 to 1990 and then evaluated against the economy from 2012 to 2017.15
In what follows, I describe the empirical moments targeted in the calibration exercise and
explain how they are informative about the model’s parameters.

Contact rates of employed, unemployed and separation rate: The monthly transition
probability from employment-to-employment (EE), and unemployment-to-employment
(UE) are informative about the contact rates of the employed (λ1) and unemployed (λ0),
respectively. The employment-to-unemployment (EU) flow probability is tightly linked
to the exogenous separation rate, δ.

To calculate the long-term averages of the UE and EU transition probabilities, I follow
the methodology of Shimer (2012) and use stocks of unemployment duration from the
monthly Current Population Survey (CPS) from March 1985 - March 1990. The monthly
probability of UE hires is calculated by subtracting the number of workers who have been
unemployed for more than a month from the total number of unemployed individuals in
the previous month. This gives us the count of workers who transitioned out of unem-
ployment from the previous month to the current month. To express this as a probability,
I divide this count by the number of unemployedworkers in the previousmonth, resulting
in a fraction representing the likelihood of transitioning from unemployment to employ-
ment. The EU separations probability is calculated by plugging the UE hires probability
into the steady-state unemployment rate. I arrive at monthly UE and EU transition prob-
abilities averaging 44.9 percent and 3.79 percent, respectively.

To compute the monthly EE transition probability, I follow the approach of Diamond
and Şahin (2016), which builds on the methodology developed in Blanchard et al. (1990)
that uses EE transition measures of the Annual Social and Economic (ASEC) Supplement
of the CPS. The annual estimates are linearly interpolated to arrive at quarterly measures
of EE transitions, which are then expressed as a monthly probability. I take the long-run

15The chosen periods have similar unemployment rates (around 6.2 percent) but considerably different
levels of employer competition (discussed in the next section). It is worth noting that the results of the cal-
ibration exercise remain qualitatively similar even when the model is calibrated to target long-run averages
of the 2012-17 period and evaluated against the 1985-90 period.
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Figure 2: Distribution of Firms Per Worker across MSA-sectors of the US, 1985-90
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Notes: Business Dynamics Statistics. This figure displays the distribution of the long-run average of firms per
worker across MSAs and 2-digit NAICS sectors of the US between 1985-90. The black dotted lines represent
quintiles of the distribution.

quarterly averages of themonthly EE transition probability over the period 1985q1-1990q1.
The EE transition probability over this period averages 2.83 percent.

Total number of firms: The total number of firms in the model is the sum of firms
over the productivity distribution, expressed as∑N

i=1 ni. The value ofN , representing the
number of productivity levels, is determined based on the average number of levels in a
worker’s lifetime job ladder, which is assumed to be five. This value falls within the range
reported in the literature on internal career ladders, with studies by Forret and Dougherty
(2004) and Caliendo, Monte, and Rossi-Hansberg (2015) suggesting four levels, while
Bayer and Kuhn (2019) find five levels. It should be noted that this value does not include
θu, which is considered a non-employer productivity level.

In order to estimate the total number of firms across the N productivity levels, I uti-
lize the firms per worker distribution across Metropolitan Statistical Area (MSA)-sector
pairs in the years 1985-90, as shown in Figure 2. This distribution is used to define a labor
market as an MSA-sector within the model.16 To determine the number of firms in the
model from the distribution of firms per worker, I first approximate the firms per worker
distribution by its quintiles (shown by the dashed lines in Figure 2). I assume that each
quintile represents an individual and isolated market in the model that differs from one
another only in terms of the number of firms. Second, I arrive at the number of firms
within eachmarket by assuming that each market faces approximately 5000 workers. This

16It is worth noting that specifying a labor market as an MSA-sector is the most narrow definition of labor
market possible when using publicly available data on firms per worker and certain model outcomes such
as EE rate dating back to 1985.
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was the average employment in an MSA-sector cell in 1985-90. I arrive at the number of
firms in each market to be {109.8, 267.2, 418.1, 625.8, and 1151.3}.17 This method of deter-
mining the number of firms enables the model to get as close as possible to the notion of
the number of firms in local labor markets whilst also capturing the dispersion in the dis-
tribution of firms per worker. Moreover, it allows the model to account for the non-linear
response of its outcomes to changing firms per worker that is prevalent in markets with
a relatively small number of firms. This point is illustrated in section 3.2.1 that discusses
the qualitative implications of the model’s outcomes in response to changing number of
firms.

Once the number of firms in each market is determined, the model is solved and simu-
lated individually for each market. Finally, the aggregate moments in the model are com-
puted by taking a weighted average of market-level moments. The weights correspond
to the employment share in 1985-90 of each quintile of the empirical firms per worker
distribution shown in Figure 2.

Finally, to allow the market-specific number of firms to take on decimal values, I ex-
press each market as a combination of several markets with an integer-valued number
of firms. For instance, if the total number of firms in a market is distributed over a two-
dimensional productivity grid (N = 2), I use a weighted average of four markets with
an integer-valued number of firms to express that market’s firms in decimal value. The
weights are uniquely determined by the difference between the decimal value and the
largest or smallest integer value.18

Distribution of firms over the job ladder: After establishing the number of firms in
each market, the subsequent step is to determine their distribution across the job ladder.

17While the estimated number of firms may appear large enough for the model to start behaving as if it
is in an infinite-firm setting, it is important to note that these firms are distributed over the job ladder. The
latter distribution is such that the number of firms at the top that have the most bite in terms of the response
of outcomes is very small. Consequently, despite the overall large number of firms, the model’s outcomes
are responsive to changes in the number of firms. In the following discussion, I delve into the distribution
of firms across the job ladder to provide further insights.

18Suppose the total number of firms in amarket is distributed over a 2-Dproductivity grid according to the
following: {n(θ1), n(θ2)}. Then each grid point can take on a decimal-valued number of firms by expressing
the market as a weighted average of four markets with integer-valued number of firms:(

n(θ1)
n(θ2)

)
= x2x1

(
n(θ1)

−

n(θ2)
−

)
+ x2(1− x1)

(
n(θ1)

+

n(θ2)
−

)
+ (1− x2)x1

(
n(θ1)

−

n(θ2)
+

)
+ (1− x2)(1− x1)

(
n(θ1)

+

n(θ2)
+

)
where the superscript − denotes the largest integer value less than or equal to the decimal value, and +
denotes the smallest integer value greater than or equal to the decimal value. The sum of all weights is 1,
and eachweight is uniquely determined by xi = n(θi)

+−n(θi). In general, a productivity gridwithN points
requires combinations over 2N markets to allow the number of firms at each grid point to take on decimal
values. Importantly, treating the number of firms as integers or not onlymatters at higher productivity levels
that face a small number of firms.
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I set the five-dimensional vector {ni/
∑N

i=1 ni}i to match the distribution of firms over the
job ladder. I approximate the job ladder by the firm size distribution, conditional on firm
age and sector. The firm size is measured by the size of the workforce. Even though most
search models featuring a job ladder postulate a positive relationship between firm size
and productivity, Haltiwanger et al. (2018) observe evidence of a firm size ladder only af-
ter controlling for firm age. I, therefore, compute the firm size distribution averaging over
firm age groups and sectors. I use firm and employment counts in firm size, age, and sec-
tor cells from the BDS to estimate the number of firms perworker over the firm size ladder.
The data on firm age are prone to left-censoring, andmany of the firm age× size cells have
missing values due to Census disclosure norms. To avoid the problem of left-censoring,
I exclude all firm age data prior to 1988. To tackle the problem of missing observations, I
aggregate the data into five firm size bins: 1-9, 10-19, 20-99, 100-499, and 500+ employees
and three firm age bins: 1-5, 6-10, and 11+ years.19 I fill in the missing firm age× firm size
× sector cells by imputing their differences from the recently available data on coarse firm
age and firm size bins provided by the BDS. Finally, I take employment-weighted averages
of the firm size classes over all the firm age-sector cells to arrive at the firm size ladder for
1987-89. The main advantage of using a firm-size ladder to proxy for the job ladder is
the availability of data dating back to the 1980s. I arrive at the following distribution of
the share of firms over the firm size bins: {0.612, 0.143, 0.166, 0.049, 0.027}, also shown
by the blue bars in Figure 4a. This distribution governs the firm share over the five-tier
job ladder in each of the markets.20 The distribution indicates that most employers in the
sample belong to the least productive tier of the job ladder, while only a small proportion
(3 percent) are situated at the top of the job ladder.

Job offer distribution: Next, I set the job offer distribution to be beta with shape pa-
rameters η and µ. These shape parameters, along with the bargaining power parameter of
workers, α, jointly inform measures of wage dispersion and wage growth. These include
the Mean-min (Mm) ratio, the standard deviation of offered wages, and wage growth as-
sociated with continuous job spells. In the model, decreases in α are associated with the
declining bargaining power of all workers, including the unemployed. This affects the
reservation wage of the unemployed and, consequently, the Mm ratio. The direction of
the effect is based on whether it is easier to contact a job from unemployment or employ-
ment. At the same time, as α declines, the standard deviation of wages offered to UE hires

19I exclude start-ups or age-0 firms. This makes no quantitative difference to the employment-weighted
firm size distribution except for making the values less unstable over time.

20In particular, it leads to the following distribution of firms over the job ladder. In Market 1: {67.3, 16.1,
18.2, 5.4, 2.9}. Market 2: {163.6, 39.1, 44.2, 13.2, 7.1}. Market 3: {256.0, 61.1, 69.2, 20.6, 11.1}. Market 4:
{383.2, 91.5, 103.6, 30.9, 16.6}. Market 5: {704.9, 168.3, 190.6, 56.8, 30.6}.
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gets compressed towards their reservation wage, while that of EE hires is weighted more
heavily by their outside option. Further, the two shape parameters of the job offer distri-
bution determine the part of the job ladder where most offers originate. A higher mass
at the lower tier of the distribution translates to a lower incidence of wage growth across
jobs and a higher one within job spells. I target the standard deviation of offered wages to
the one estimated by Hall and Mueller (2018). Using panel data on job seekers drawing
unemployment benefits in New Jersey in 2009 (Krueger-Mueller Survey), they estimate
the standard deviation, after controlling for the job seeker’s productivity, to be 0.24. Fur-
ther, I target the Mm ratio between 1.5 and 2, as documented in Hornstein, Krusell, and
Violante (2011). I compute wage growth over continuous 12-month job spells using the
SIPP 1996-2000 panel.

The discount rate, γ, is set to match an annual interest rate of four percent. I set ν,
the probability of workers switching to a peer firm, to 0.5. In other words, workers are
equally likely to stay in their firm or switch firms upon encountering an offer on-the-job
from a firm of the same productivity as their incumbent firm. Output across all matches,
y(θi), is expressed as θi additively scaled up by a constant output shifter, ζi. This is done
so that the least productive firm produces non-zero output. I set the output shifter to 1.
In the calibrated model, this implies the ratio of the flow value from leisure, net of the
output shifter and as a fraction of the Average Labor Productivity (ALP) is in line with
the target range set in the literature (Shimer (2005), 0.4; Mas and Pallais (2019), 0.6; Hall
and Milgrom (2008), 0.71 and Hagedorn and Manovskii (2008), 0.995).

The model’s parameters are calibrated using the Simulated Method of Moments. This
procedure aims at choosing those parameter values that minimize the distance between
the model-simulated and corresponding data-generated moments. The model is identi-
fied using sevenmoments (averages of UE, EU, and EE transitions, the standard deviation
of offered wages, the Mm ratio, wage growth associated with continuous job spells, and
the flow value from leisure as a fraction ALP) to inform seven parameters (λ0, λ1, δ, η, µ, α,
z).

Table 1 shows the model’s calibrated parameters that minimize the distance between
the targeted and model-generated moments as well as its fixed parameters. Table 2 re-
ports the simulated moments of the model at the calibrated parameters and their targeted
counterparts. The model moments come close to delivering their targeted values.
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Table 1: Parameter Values

Parameter Value Target/Source
Externally Calibrated

N Productivity Levels 5 Bayer and Kuhn (2019)∑N
i=1 ni Mean Firms Across Markets 266 Emp-weighted FPW dist., MSA×Sector (BDS)

{ni/
∑N

i=1 ni}i Firm share|Job ladder {0.61, 0.15, 0.17, 0.05, 0.03} Firm share|Firm Size dist. (BDS, 1987-89)
γ Discount Rate 0.004 4% annual interest rate

Internally Calibrated
λ0 Contact Rate of Unemp 0.39 E [UE]
λ1 Contact Rate of Emp 0.09 E [EE]
δ Separations Rate 0.04 E [EU]
η, µ Job Offer Distn ∼ Beta 1.05, 0.73 SD (Log Wage Offers); w∆|Job Spell
α Worker’s Bargaining Share 0.45 Mean-min Ratio
z Flow value of leisure 0.73 z/Average Labor Productivity

Notes: This table displays the calibrated parameter values of the model when the model is simulated at
a monthly frequency. E[EU] and E[UE] stand for, respectively, the average worker flows into and out of
unemployment, and E[EE] stands for average employment-to-employment flows. All flows are computed at
a monthly frequency and averaged over a five-year horizon from 1985-90. SD(Wages) refers to the standard
deviation of log offered wages. Mm ratio refers to the Mean to min ratio of the wage distribution. w∆|Job
Spell denotes the average wage growth associated with 12-month continuous job spells. BDS stands for
BusinessDynamics Statistics. The total number of firms is the employment-weighted average of each quintile
of the empirical firms per 5000 workers distributed across MSA-sector pairs between 1985-90.

Table 2: Model-generated Moments and their Targeted Values

Moment Model Data Data Source
E [UE], % 39.0 44.9 CPS, 1985-90
E [EE], % 2.92 2.83 CPS, 1985-90
E [EU], % 3.96 3.79 CPS, 1985-90
SD (Log Wage Offers) 0.25 0.24 Hall and Mueller (2018)
E [Wage Growth, 12m Job Spell], % 0.61 0.90 SIPP, 1996-00
Mm Ratio 1.52 1.5-2 Hornstein, Krusell, and Violante (2011)
z/ALP 0.38 0.40 Shimer (2005)

Notes: This table displays the model-simulated moments and their targeted counterparts, where the latter
are used to arrive at the optimal parameter values. E[EU] and E[UE] stand for, respectively, the average
worker flows into and out of unemployment, and E[EE] stands for average employment-to-employment
flows. All flows are computed at a monthly frequency and averaged over a five-year horizon from 1985-90.
SD(Wages) refers to the standard deviation of log offeredwages. Mm ratio refers to theMean tomin ratio of
thewage distribution. w∆|Job Spell denotes the averagewage growth associatedwith 12-month continuous
job spells. ALP stands for Average Labor Productivity.

3.2 Equilibrium Effects of Declining Number of Firms

This section analyzes the model’s implications when the number of firms varies from its
baseline level. In particular, holding the productivity of each firm constant and all param-
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Figure 3: Decomposing the Response of Model Outcomes to Changing Number of Firms
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Notes: This figure displays the model-simulated moments in response to different values of the number
of firms, holding all other parameters fixed at their calibrated values in Table 1. The figure distinguishes
between four versions of themodel: (1) The benchmarkmodel with themega-firm and retaliation channels,
(2) A version of the model with mega firms only, without retaliation. (3) A version of the model with
uniformly distributed firms over the productivity grid that are allowed to retaliate. (4) A model without
mega firms and retaliation. The x-axis of each panel denotes the total number of firms in the model. The
vertical line represents the number of firms in the calibrated model.

eters at their calibrated values, I understand the effect of changing number of firms on the
equilibrium outcomes of the model. I first explain the qualitative implication of the model
and evaluate themodel’s mainmechanism. I then show the quantitative predictions of the
model to different experiments involving changing the number of firms.

3.2.1 Qualitative Implications of the Model

Figure 3 plots labor flow and wage moments generated by the model when the number
of firms, ni, at each productivity level is varied by the same proportion. Specifically, the
number of firms across different productivity levels and markets is scaled proportionally
by the following factors: 0.4, 0.5, 0.75, 1.25, 1.5, 1.75, 2, 2.25, and 2.5. All other parameters
of the model are held fixed to their values shown in Table 1. The vertical line represents

26



the calibrated model where the employment-weighted average number of firms across all
model markets is set to 266. The benchmarkmodel, described in Section 2, is shown by the
solid red line. Each of the subsequent lines plots various versions of the model, shutting
off the effect of its different channels. Inwhat follows, I first discuss the comparative statics
of changing the number of firms in the benchmark model and then examine the model’s
mechanisms.

3.2.1.1 Benchmark Model

The solid red line in Figure 3a shows that the average EE transition rate increases in the
number of firms. As the number of firms on the job ladder uniformly declines, employees
of these firms face a lower probability of receiving offers from poaching firms at the same
productivity level. This reduces worker propensity to quit and make EE transitions. In
the extreme case, suppose the most productive tier of the job ladder comprises only one
firm; then, all employees of that firm lose the option of making a job switch. As the most
productive firms are also the largest in themodel, a higher share of employees is prevented
frommaking EE transitions if the incumbent firm faces no competition. On the other hand,
as the competition intensifies, the probability of receiving an offer from a firm at the same
productivity level increases resulting in a higher number of quits.

The solid red line in Figure 3b shows the average level of wages, relative to productiv-
ity, is also increasing in the number of firms. This happens for two reasons: First, average
real wages are a function of the joint match value between the worker and the incumbent
firm. As the number of firms in the labor market decreases, so does the option value of
on-the-job search from the incumbent firm. This reduces the joint value of the match and,
therefore, decreases the average wages relative to productivity. Second, the strong non-
linearity in the plot is due to firms imposing a penalty on re-applicants. In an environment
with many firms in the market, each firm has a lower share in the offer distribution, and
the market converges towards one with atomistic firms. This diminishes firms’ ability to
penalize workers by removing their offers from workers’ outside options. Thus, compe-
tition intensifies with an increasing number of firms trying to poach and retain workers,
increasing workers’ value and bidding up wages. However, the opposite is true as com-
petition dampens. Suppose there is a single firm at a given productivity level, and that
firm’s vacancy is precluded from the worker’s job search. In that case, the worker faces
a reduction in their job-finding probability that is tantamount to losing a tier of the job
ladder. This leads to a considerable decrease in wages.

The growth rates of wages associated with job stayers and switchers are shown in fig-
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ures 3c and 3d, respectively. As competition in the economy increases, workers are more
likely to receive higher wage offers from poaching firms. In trying to match such offers,
incumbent firms offer themaximumwage they can afford to retain the workers, leading to
a higher average wage level for stayers. As a result, workers increasingly receive a within-
job wage increase as employer competition increases, resulting in the rising wage growth
of job stayers. At the same time, workers face a higher likelihood of maxing out on their
wages as job stayers, which means wage growth associated with job switches is lower if
the number of firms is high. At the other end of the spectrum, when workers face fewer
firms, they are much more likely to stay longer on the same job and at a suppressed wage,
such that there is more room for wages to increase when workers switch jobs. In Section
4.2.3, I showdescriptive evidence of the distinct response of thewage growth of job stayers
and switchers, both in magnitudes and signs, to varying firms per worker.

3.2.1.2 Main Mechanisms of the Model

Themain channels throughwhich the changing number of firms drives themodel out-
comes can be summarized as the following: (1) Mega Firm Channel: For a given distribu-
tion of firms and offers over the job ladder, a decrease in the number of firms makes every
firm larger. As employment and offers become concentrated in large firms, workers in
these firms face a reduced probability of finding a job outside their firm. This reduces the
worker’s value from searching on-the-job from the incumbent firm. (2)Retaliation Channel:
Workers can no longer match with the incumbent firm from their outside option, thereby
reducing the option value of on-the-job search from their outside option. When negotiat-
ing wages with the incumbent firm, the worker has a lower threat point, which reduces
their share of the joint value. Note that both model mechanisms are enabled through the
worker searching on the job, either from the incumbent firm or their outside option:

The benchmark version of the model described in Section 2 allows for the Mega Firm
and Retaliation Channels. In this model, the distribution of firms over the job ladder,
{ni/

∑N
i=1 ni}i, is skewed to the right leading to the very large and productive firms at

the top of the ladder. Workers cannot re-apply to firms they have turned down, leading to
retaliation. It is useful to consider how themodel behaves in the absence of these channels
to understand how each channel and its interactions affect model outcomes. This involves
constructing three different economies that are distinct from the benchmark model. In
each of these economies, all other parameters, except the ones described below, are held
fixed to their values given in Table 1.

Allowing Mega Firms Channel Only: This version of the model no longer allows firms
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to retaliate in the benchmark model. In other words, firms no longer penalize workers
for turning their offers down. Both unemployed and employed workers can re-apply to
the vacancy of the firms they are bargaining with from their outside options. This model
allowswages to be set as in equation 2 instead of 3, i.e., theworker’s outside option contains
the option value of matching with the incumbent firm again. I describe the model’s value
functions in Appendix A5.

Allowing Retaliation Channel Only: This model version allows firms to retaliate, but it
shuts the mega-firm channel that is enabled through the skewed distribution of firms over
the job ladder. In other words, this model version is the same as the benchmark model in
section 2, with one exception. Instead of assuming the firmdistribution over the job ladder,
{ni/

∑N
i=1 ni}i is {0.61, 0.15, 0.17, 0.05, 0.03} as shown in Table 1, the model assumes all

firms are distributed uniformly over the job ladder, i.e., {ni/
∑N

i=1 ni}i is {0.2, 0.2, 0.2, 0.2,
0.2}. Thus, relative to the benchmark model that uses the right-skewed distribution of
firms, this model version allows the share of firms to be equalized across all productivity
levels.

Switching off Mega Firm and Retaliation Channels: This model version switches off retali-
ation and mega-firms by using the version of the model detailed in Appendix A5. In that
model version, it assumes that firms are uniformly distributed over the productivity grid,
i.e., {ni/

∑N
i=1 ni}i = {0.2, 0.2, 0.2, 0.2, 0.2}.

Figure 3 plots the three distinct versions of the model: (1)Model with mega firms only
that shuts down the retaliation channel (blue dashed line), (2)Modelwith retaliation only
that shuts down themega-firm channel (green dash-dotted line), and (3)Model that shuts
down mega firms and retaliation (black dotted line). Across each model variant, I hold
all the other parameters of the model constant to their values in Table 1 and allow the
outcomes to only vary with the number of firms.21

Figure 3a shows that the EE transition rate is increasing in the number of firms across
the two versions of the model, with and without mega-firms. Compared to a model with
uniformly distributed firms (black dotted line), in a model with mega-firms (red solid
line), firms at the top of the job ladder are fewer and larger. Thus, for a given number of
firms, the level of EE transitions is lower in a model with mega-firms. As the number of
firms further decreases along the x-axis, the model with mega-firms gravitates towards
one with a single firm at the highest tier of the job ladder, thereby amplifying the decline
in EE transitions. This effect is attenuated in a model without mega firms. Note that
the retaliation channel does not affect any realized worker transition; therefore, the EE

21Just as in the previous section, the number of firms across all productivity levels andmarkets is adjusted
proportionately based on the following factors: 0.4, 0.5, 0.75, 1.25, 1.5, 1.75, 2, 2.25, and 2.5.
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transition rate in models with and without retaliation coincide.
Figure 3b shows that across all versions of the model, wages/productivity are non-

decreasing in the number of firms. The retaliation andmega-firm channels independently
are less important in generating a wage response to a changing number of firms. Their in-
teraction amplifies the wage response relative to a model without these channels. This
means that for an individual worker, the wage penalty of retaliation is considerably worse
in an economy with fewer firms, in which the firm imposing the penalty is large. Retal-
iation is less crucial in a model where firm competition is high, either due to a higher
number of firms or through the absence of mega firms.

Figures 3c and 3d show that, for all versions of the model, the wage growth associated
with continuous job spells is small and positively related to the number of firms. In con-
trast, that associated with EE transitions is large and negatively related to the number of
firms. To understand the model behavior across different channels for a given number of
firms, I first hold the mega-firm channel constant and compare the model with retaliation
(solid red line) to the one without retaliation (dashed blue line) in figures 3c and 3d. As
wage levels are suppressed relative to productivity in the presence of retaliation (Figure
3b), there is more room for wages to grow, both across and within firms. This means job
stayers and switchers realize a more considerable wage growth in models with retaliation
than in models without retaliation. This is seen by the solid red line (with retaliation)
being above the dashed blue line (without retaliation) and the dashed-dotted green line
(with retaliation) being above the dotted black line (without retaliation) in figures 3c and
3d.

Next, hold the retaliation channel constant and compare the models with mega firms
(solid red line) and without mega firms (dashed-dotted green line). For a given number
of firms, the model with mega-firms has less competition among firms. Thus, in a model
with mega-firms, relative to one without, we see higher wage growth of job switchers and
lowerwage growth of job stayers. Notice that this follows intuitively from the discussion in
the previous section that focused only on the benchmarkmodel, where in an environment
of low competition due to fewer firms, the wage growth of job switchers is high, and job
stayers is low. This explains why for the job switchers, the solid red line (with mega-
firms) is above the dashed-dotted green line (without mega-firms), and the dashed blue
line (with mega-firms) is above the dotted black line (without mega-firms). This also
explains why for the job stayers, the opposite holds: the solid red line (with mega-firms)
is below the dashed-dotted green line (without mega-firms), and the dashed blue line
(with mega-firms) is below the dotted black line (without mega-firms).
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Figure 4: Firm Share and Changes in Firms Per Worker over the Firm Size Ladder
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Notes: Business Dynamics Statistics. The left figure shows the firm share over the firm-size ladder in 1987-89
and 2015-17. The right figure shows the changes from 2015-17 to 1987-89 in the long-run average of the ratio
of the number of firms to workers over firm size classes.

3.2.2 Quantitative Implications of the Model

In this section, I quantify the model’s implications on wages and EE transitions when the
number and distribution of firms in themodel vary by the extent to which they changed in
the US economy between 1985-2017. Specifically, I undertake the following experiments:
(1) Simulate a change in the firm share over the job ladder in the model that was observed
in the data between 1987-2017. (2) Simulate a 13.1% decrease in the number of firms at
each productivity level observed in the aggregate US economy from 1985. (3) Simulate
an asymmetric change in the number of firms over the productivity distribution. Across
all experiments, I hold all other parameters of the model constant to their values given in
Table 1. In what follows, I first describe each of the three experiments and their combina-
tions, then discuss the results.

I. Changing the distribution of firms over the job ladder: A key ingredient of the
model is the right-skewed distribution of firms over the job ladder, which leads to a small
number of large and highly productive firms. Few large firms at the top of the job ladder
amplify the mega-firm and retaliation channels. The baseline calibration of the model ap-
proximated the firm distribution over productivity levels by the share of firms over firm
size classes, conditioning on firm age and sector. This is shown in Figure 4a, which plots
the distribution of firms over the firm size ladder in the baseline calibration of the model
for 1987-89. The figure also displays the corresponding distribution for 2015-17. The dis-
tribution of firms over the job ladder is further skewed to the right between the two time

31



periods. In the first experiment, I, therefore, hold all parameters, including the number
of firms, constant to the baseline calibration in Table 1 and only change the distribution of
firms over the job ladder, {ni/

∑N
i=1 ni}i, from the blue bars in 1987-89 to the green ones

in 2015-17 shown in Figure 4a. In this experiment, the aggregate employment-weighted
number of firms in the model remains the same between 1985-90 and 2012-17.

II. Decreasing firms perworker uniformly over the job ladder: Apart from the chang-
ing distribution of firms over the job ladder, the US economy also observed an aggregate
decline, of 13.1 percent, in the number of firms per worker between 1985-2017. This de-
crease is shown in Figure 1, which plots the secular decline in firms per worker. In the
next experiment, I simulate a symmetric decrease in the firms per worker in the model.
This is done by decreasing the number of firms, ni, at each productivity level, and within
each market, by 13.1 percent. This causes the employment-weighted number of firms in
the model to decrease to 231 in 2012-17. I hold all other parameters of the model, includ-
ing the distribution of firms over the job ladder and the number of workers, fixed to their
baseline values in Table 1.

III. Changing firms per worker asymmetrically over the job ladder: Experiment II
assumed that the decrease in firms per worker observed in the US occurred uniformly
across the productivity distribution; however, there is no a priori reason to assume that
this decrease was symmetric. To examine whether different points of the job ladder ex-
perienced differential changes in firms per worker over time, I again approximate the job
ladder by the conditional firm size ladder. Figure 4b plots changes in the employment-
weighted average firms per worker between 1987-89 and 2015-17 for the five firm size bins
from the BDS, conditional on firm age and sector. The figure points to a scenario far from
a constant change in firms over the job ladder. Between the two time periods, small-sized
firms saw an increase in the average number of firms per worker, whereas most of the ag-
gregate decline resulted from large-sized firms. This happened because the growth rate
of employees outpaced the growth rate of firms among the largest firm-size classes. In
other words, the firm size distribution became increasingly dispersed over time.22 In the
next experiment, I utilize the asymmetric nature of shifts in firms per worker across dif-
ferent firm size classes. Specifically, I vary differentially the number of firms, ni, in each
tier of the job ladder by the same extent to which it changed in the corresponding size
class in Figure 4b. This translates to an increase in n1 by 7.2 percent, a decrease in n5 by
31.8 percent, and so on across all markets of the model. In this experiment, the aggregate
employment-weighted number of firms increases in the model from 266 in 1985-90 to 274
in 2012-17.

22I discuss this in more detail in Section 4.1.
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IV. Changing firms per worker uniformly along with changing distribution of firms
over the job ladder: This experiment combines experiments I and II above. In particular,
holding all parameters constant, I shift the distribution of firms over the job ladder and
decrease the number of firms uniformly by 13.1 percent across all tiers of the job ladder.
This results in a decrease in the aggregate employment-weighted number of firms by 13.1
percent over the two time periods, along with a shift in the distribution of firms to the left,
as shown in Figure 4a.

V. Changing firms per worker asymmetrically along with changing distribution of
firms over the job ladder: The benchmark experiment combines experiments I and III
above. Holding all parameters constant, I shift the distribution of firms over the job ladder
and decrease the number of firms differentially over the job ladder. This increases the
aggregate employment-weighted number of firms from 266 in 1985-90 to 275 in 2012-17.
This change in firms per worker is simulated along with a shift in the distribution of firms
to the left, as shown in Figure 4b.

Table 3 reports the actual changes in EE transition rate and wages/productivity ob-
served in the data along with their model-implied changes in response to the changing
number of firms across the various experiments described above. Panel (a) compares the
average EE transition rate and the real hourly compensation/real hourly output for the
US economy in 1985-90 and 2012-17. For both periods, the long-run averages of the two
moments have been computed from the CPS and BLS, respectively.23

Panel (b) shows the response of the model’s outcomes to each of the experiments. The
first experiment simulates the change in firm distribution over the job ladder shown in
Figure 4a. The model can account for about 14 percent of the decrease in EE rate and a
small fraction of the decrease in wages. In the second experiment, decreasing the firms
per worker uniformly at each productivity level results in a similar decline in EE transi-
tions of 2.7 percent, accounting for about 14 percent of the overall decrease over the two
periods. Wages/productivity decreased by 0.3 percent, accounting for about three percent
of the overall decrease in the data. In the third experiment, simulating a disproportion-
ate change in the number of firms in the model corresponding to Figure 4b exacerbates
the decline in the two moments. The model now explains about a fourth of the overall
decline in EE transitions and a tenth in wages relative to productivity. The benchmark
experiment V combines a disproportionate decrease in firms with a shift in the distribu-

23I use the EE transitions probability series provided by Fujita, Moscarini, and Postel-Vinay (2023), which
is based on the imputation of missing answers to questions that affect the computation of EE transitions
post-2008 in the CPS. For wages/productivity, I deflate both series by the implicit price deflator to alleviate
concerns about its downward trend being driven by differences in price deflators typically used for comput-
ing real compensation (CPI-urban) and output (implicit price deflator).

33



Table 3: Data and Model-generated Moments (Non-Targeted)

EE transition Rate (%) Wages/Productivity
(a) Data

1985 - 1990 2.83 1.00
2012 - 2017 2.29 0.90
Actual change, % -18.9 -9.76

(b) Model
I. Changing distribution of firms over the job ladder

Model change, % -2.60 -0.32
Explained by model, % 13.7 3.32

II. 13.1 percent symmetric decrease in FPW
Model change, % -2.64 -0.34
Explained by model, % 13.9 3.46

III. Asymmetric change in FPW
Model change, % -7.20 -0.84
Explained by model, % 38.1 8.56

IV. Combining I & II:
Changing dist of firms & symmetric change in FPW
Model change, % -5.41 -0.67
Explained by model, % 28.6 6.91

V. Combining I & III:
Changing dist of firms & asymmetric change in FPW
Model change, % -12.3 -1.89
Explained by model, % 65.1 19.3

Notes: This table evaluates the model-simulated moments in 1985-90 (1980s) against their empirical coun-
terparts measured in 2012-17 (2010s). Change refers to the percentage change in the long-run average of the
moment from 1985-90 to 2012-17. Panel (a) shows (i) average employment-to-employment flows measured
at a monthly frequency and averaged over a five-year horizon from the CPS and (ii) the five-year average
of real compensation per hour index/real output per hour index, denoted at w/p, and normalized to 1 in
the 1980s, from the BLS. Panel (b, I) simulates the change in firm distribution over the job ladder shown in
Figure 4a. Panel (b, II) decreases firms per worker by 13.1 percent uniformly across all productivity levels
in the model. Panel (b, III) simulates changes in firms per worker in each productivity bin corresponding
to Figure 4b. Panels (b, IV) and (b, V) combine, respectively, experiments I and II and I and III. Each exper-
iment reports the corresponding changes in the EE transition rate and wages/productivity and the fraction
of their decrease in the data that is accounted for by the model. Panel (b, V) represents the benchmark
experiment.

tion of firms, almost doubling the decrease in the two outcomes. The model captures
approximately two-thirds of the decline in EE transitions and around one-fifth of the de-
cline in wages/productivity. This decline can be attributed to a shift in the firm share to
the left, along with a decrease in the number of firms per worker at the top of the job
ladder by almost a third. As a result, the already large firms at the top of the job ladder
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experience further increases in size, contributing to the overall decline in EE transitions
and wages/productivity.

To summarize, this section showed the qualitative and quantitative predictions of the
model when the number of firms varied, holding the number of workers and all other
parameters fixed. The comparative statics captured the model response of a decline in EE
transitions and wages/productivity to decreasing competition. In terms of magnitudes,
the model can account for 65 percent of the decline in EE transitions and 19 percent of the
decrease in wages observed in the US between 1985-2017. These findings are based on the
benchmark experiment, which simulates a shift in the firm distribution and differential
changes in firms per worker at various points along the productivity distribution.

The model presented in the previous section relied on the finiteness of firms as a key
factor contributing to their market power, which led to significant non-linearities in the
response of the outcomes when the number of firms changed. Empirically, this translates
to variations in the number of employing firms within a labor market for a given number
of workers. Themodel predicted that markets with a higher number of firmswould result
in more outside options for workers. More outside options would have twofold implica-
tions for the employed. First, more chances to quit, resulting in a high rate of job-to-job
transitions. Second, increased efforts of firms to retain workers result in higher average
wages. In the next section, I examine these predictions of the model in the cross-section
and provide suggestive evidence of the model’s implications.

4 Firms Per Worker and Model Outcomes in the Cross-
Section

In this section, I first document empirical trends in the model-relevant measure of em-
ployer competition for workers − the number of firms24 in a labor market normalized by
the number of workers.25 As the number of firms and workers in the US economy has
trended upward over the last several decades, I use the ratio of the two as a measure of
labor market competition. I document evidence of a persistent and long-run decline in

24More precisely, the empirical counterpart of the measure of competition in the model is the number of
hiring firms. This measure is unavailable over a long time horizon for the US economy. I proxy for this
measure by the number of firms (i.e., employer firms with a size greater than zero and excluding non-
employee firms) available from the late 1970s.

25Workers specifically refer to employed workers. I focus on employed workers because of the availability
of their data in narrowly-defined markets. The aggregate downward trend in firms per worker shown in
the next section has been similarly documented for firms per working-age person and firms per labor force
participant from the early 1990s.
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the number of firms per worker in the US. I show that this decline is pervasive across two-
digit industrial sectors, states, and sector-state pairs and, therefore, not a consequence of
the compositional changes that have taken place over the same period in the US economy.

Next, I test themodel’s predictions by examining the relation between firms perworker
and the different model-relevant outcomes in the data, such as the pace of job mobility,
wages/productivity, wage growth associated with EE transitions, and the wage growth of
job stayers. The aim is to provide descriptive evidence of the model’s mechanism linking
declining worker mobility and slowing wages in the US economy to the declining number
of firms relative to workers.

The evidence documented in this section on the model-relevant measure of competi-
tion and outcomes utilizes data from several sources that are outlined in Appendix B1.

4.1 Evolution of Firms per Worker in the US Economy

I first focus on the number of firms, establishments, and workers for the aggregate US
economy. Figure 5 plots trends in firms- and establishments- per worker from 1985-2019,
with both ratios normalized to one at the beginning of the sample. Two observations are
immediately apparent. First, both ratios experienced a long-run decline over the sample
period, with firms per worker recording a steeper decline (19.2 percent) than establish-
ments per worker (11.7 percent). While both ratios were relatively stable through the
mid-80s, they started experiencing a decline by the early 90s, which became more pro-
nounced through the late 90s. The 2000s saw a mild recovery, following a sharp decline in
the years post the Great Recession.26 Second, the declines in firms per worker were espe-
cially sharp in periods of economic boom, suggesting that growth in employers failed to
keep pace with the growth in employees. In the analysis to follow, I focus on firms rather
than establishments, as I am interested in the changing number of employers rather than
the number of work locations of existing employers.

One possible interpretation of the aggregate decline in the firms per worker could be
the compositional shifts across sectors or regions over the sample period. If labor is re-
allocated towards sectors or regions with a relatively low firm-to-worker ratio, then such
reallocation could bias the aggregate ratio to lower values, even with unchanged or in-
creasing firms per worker within those sectors or regions. This would raise the concern

26It is noteworthy that the period from the late 1990s has also witnessed a secular decline in firm com-
petition measured by concentration indices (such as employment-based HHI or employment share of the
largest 20 firms in an industry (Autor, Dorn, Katz, Patterson, and Van Reenen, 2020) and wage markdowns
(Yeh, Macaluso, and Hershbein, 2022). I discuss the co-movement of firms per worker and concentration
indices in the next section.
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Figure 5: Firms and Establishments per Worker, 1979-2018
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Notes: Business Dynamics Statistics. This figure shows the ratio of the number of firms and establishments to
the number of workers in the US economy from 1985-2019. Both ratios are normalized to 1 at the beginning
of the sample.

that the aggregate decline results from changing employment composition across indus-
tries and regions rather than a decline within them. To understand the role of composi-
tional changes that have taken place over the sample period in driving the aggregate trend,
I examine changes in firms per worker within sectors, regions, and sector-by-region cells.

Table 4 reports long-run averages of firms per worker within sectors, or two-digit
NAICS industries, over five-year horizons. A few observations are noteworthy. First, the
table shows that the shrinking sectors of the economy, such as Manufacturing and Util-
ities, had the lowest number of firms per worker in the 80s. They were the only sectors
that saw an increase in the ratio over time. A closer inspection of the trends in the levels
of firms and workers plotted in Figure A2 of the appendix reveals that the decline in firms
could not keep pace with labor reallocating away from these sectors. As a result, these
sectors experienced an overall increase in the firms per worker over the sample period.

Next, the Service sectors and Wholesale and Retail trade, which have grown over the
last three decades, have experienced a decline in firms, even as workers have increased.
This led to an overall decrease in firms per worker. For the remaining services sectors, the
number of firms increased but did not keep pacewith the increase in employment, leading
to an overall decline in the ratio. Overall, all services sectors of the economy experienced
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Table 4: Firms per Worker by sector and time-period, 1985-2017

1985-1990 1995-2000 2012-2017

Utilities (22) 0.008 0.010 0.010
Construction (23) 0.099 0.099 0.095
Manufacturing (31-33) 0.018 0.019 0.022
Wholesale Trade (42) 0.065 0.061 0.051
Retail Trade (44-45) 0.061 0.049 0.039
Trans & Warehousing (48-49) 0.038 0.037 0.036
Information (51) 0.021 0.022 0.022
Financial Activities (52-53) 0.081 0.077 0.079
Prof & business serv (54-56) 0.052 0.045 0.039
Edu & health (61-62) 0.034 0.030 0.027
Arts & Accommodation (71-72) 0.052 0.044 0.040
Other serv (81) 0.128 0.120 0.118

Notes: Business Dynamics Statistics. This table displays the long-run averages of firms to worker ratio for
each sector. Two-digit NAICS sectors are listed in parentheses.

a drop in the firm-to-worker ratio, except Information and Finance, which did not expe-
rience much change. I conclude that the aggregate decline in Figure 5 was not a result of
compositional changes across sectors over the same period. Table 4 shows the opposite:
sectors with the highest firms per worker in the 1980s US economy have expanded, while
thosewith the lowest firms perworker have contracted. The aggregate decline in firms per
worker was also not a result of shifting employment composition across different regions.
Figure A1 of the appendix plots the firms-to-worker ratio for all states over the sample
period and shows that the decline is pervasive across all states.

Figure 6, Panel (a) shows a scatter plot of firms per worker for all states and sectors in
the US. The x-axis denotes their long-run average for the 1985-90 period, while the y-axis
reports the same for 2012-17. Points below the 45 degrees solid black line depict those
state-sector cells that recorded a decrease in firms per worker over the sample. The figure
shows that the decline in firms per worker has been pervasive across all states and sectors
of the US. To further understand the evolution of the ratio within both states and sectors,
Panel (b) plots the distributions of long-run averages of firms per worker across state-by-
sector cells, expressed in terms of changes relative to their counterparts in 1985-90, denoted
by the vertical line at zero. The figure shows that themass on negative values has increased
− and that on positive values has declined− in each subsequent sub-period from 1985-90.
Approximately 73% of the state-by-sector cells experienced a decline in firms per worker
in 2012-17 relative to 1985-90.
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Figure 6: Firms per Worker in state-sector pairs
(a) Firms per Worker, 1985-90 and 2015-17
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(b) Distribution of Changes in Firms per Worker,
1984-2017
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Notes: Business Dynamics Statistics. Panel (a) plots the long-run averages of firms per worker across state
× two-digit NAICS sector pairs for two time periods. Panel (b) plots the change in firms per worker within
each state × two-digit NAICS sector relative to 1985-90 (denoted by the black dashed line at zero).

4.1.1 Firms Per Worker and Concentration Indices

How do firms per worker compare to other measures of firm competition? Figure 7 plots
the HHI of employment concentration for several sectors of the economy (Autor et al.,
2020) on the left axis, along with their firms per worker on the right axis. Both measures
are computed by taking weighted averages of the corresponding ratios at the 4-digit in-
dustry level. The HHI takes each sector’s sales/revenue share as weight, whereas firms
perworker use the employment-basedweights. The figure shows a clear negative relation-
ship between the two measures for three major super-sectors in the US: Manufacturing,
Services, and Trade. Similar trends are also observed in the correlation of firms perworker
and the employment shares of the largest firms across industries reported in Autor et al.
(2020) and shown in Figure A3 of the appendix.

Next, Figure 8, Panel (a) plots firms perworker and sales-basedHHI across all six-digit
industries in the Economic Census of 2017. The relationship between the two measures
is negative and robust: a one percent increase in firms per worker is associated with a
0.75 percent decrease increase in sales-based HHI. Panel (b) compares firms per worker
with the employment share of the four largest firms across six-digit industries and finds a
strong negative relationship.

To sum up, the decline in the number of firms per worker is evident in the aggre-
gate economy and within sectors, states, and a majority of sector-by-state cells. Firms per
worker also behave consistently with measures of concentration. The strong correlation
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Figure 7: Employment-based HHI from Autor et al. (2020) and Firms Per Worker
(a) Manufacturing
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(b) Services

1985 1990 1995 2000 2005 2010

Year

0.04

0.045

0.05

0.055

0.06

0.065

F
ir
m

s
 P

e
r 

W
o
rk

e
r

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

E
m

p
-H

H
I

(c) Retail Trade
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(d) Wholesale Trade
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Notes: Business Dynamics Statistics. This figure displays firms per worker within four-digit industries on
the left axis and the employment-based average HHI (Autor et al., 2020) on the right axis. Both indices
are averaged across all four-digit industries to arrive at sector aggregates. The HHI and firms per worker,
respectively, weigh industries by their share of total sales and total employees.

between firms perworker and conventionally usedmeasures of competitionmakes the for-
mer especially appealing due to its public availability and detailed measurability across
space and time. In the next section, I explore the relation between firms per worker and
certain predictions of the model in the cross-section. I show that the decline in firms per
worker is correlated to the pace of job mobility, average wages, and wage growth of job
stayers and movers, in line with the model’s predictions.
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Figure 8: Sales-based HHI, Employment Concentration and Firms Per Worker
(a) Sales-based HHI and FPW
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(b) Employment-share of Top 4 firms and FPW
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Notes: Economic Census and Business Dynamics Statistics, 2017. This figure displays binned-scatter plots
of firms per worker and (a) sales-based HHI, and (b) employment-share of top 4 firms across six-digit
industries. The top 4 firms are defined on the basis of sales.

4.2 Assessing the Model’s Implications in the Cross-section

The model presented in the last section predicts that firms per worker vary positively
with (1) job-to-job transitions, (2) wages/productivity, and (3) wage growth of job stay-
ers and negatively with (4) wage growth of job switchers. In this section, I test themodel’s
implications pertaining to these moments using cross-sectional data. Figure A4 of the ap-
pendix shows that scatter plots of raw data summarizing these relationships are consistent
with the model’s predictions. Panel A4a plots the average EE transition rate and firms
per worker of US state-sector pairs in 2012-17 and shows that sub-markets with higher
firms per worker also had a higher EE transition rate. Panel A4b plots the payroll share of
value added with the firms per worker across industries in 2012-17 and shows a positive
relationship between the two. Panels A4c and A4d show binned scatter plots of, respec-
tively, individual wage growth across 12-month job spells with the same employer, and
wage growth associated with EE transitions plotted against the firms per worker belong-
ing to the state and sector of the individual between 1996-2000. Job stayers inmarkets with
higher firms per worker experienced higher annual wage growth, and job switchers who
moved from markets with higher firms per worker experienced lower wage growth. In
the following sections, I explore these relationships formally in the data.
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4.2.1 Firms Per Worker and EE Transitions

The decline in labor market dynamism has been well-documented for the US economy
(Hyatt and Spletzer, 2016; Molloy, Smith, Trezzi, and Wozniak, 2016), and is particularly
evident on the worker-side from the declining pace of job-to-job transitions. This section
provides evidence of the association between job-to-job flows and the firm-to-worker ratio.
The reduced-form specification is the following:

log(EE Rate)jmt = β1log(Firms Per Worker)jmt + β2Xjmt + αjt + αmt + ϵjmt (15)

where log(EE Rate)jmt is the log of average job-to-job transition rates in sector j, MSA
m, and in year t. The main explanatory variable log(Firms Per Worker) is the log of the
firm to worker ratio; X is the share of the workforce by their age (14-18, 19-21, 22-24,
25-34, 35-44, 45-54, 44-64, 65+), and education groups (below high school, high school,
college, above college), as well as the share of workforce at firms of different age- (0-1,
2-3, 4-5, 6-10, 11+) and size-groups (0-19, 20-49, 50-249, 250-499, 500+ employees) at the
sector-metropolitan area-year level. αjt is a vector of sector-by-year fixed effects, and αmt

is a vector of metropolitan area-by-year fixed effects. Thus, the relation between firms per
worker and EE rate utilizes the variation across local labor markets, denoted bymetropoli-
tan area-sector pairs, controlling for time-varying characteristics of sectors andmetropoli-
tan areas.27 All standard errors are clustered at the metropolitan area-by-sector level and
sub-markets are employment-weighted.

Table 5 columns (1)-(3) report the coefficient on log firms per worker from estimating
different specifications of equation 15, where the dependent variable is the EE separations
rate. Overall, the number of firms per worker is positively related to the EE transition rate.
When the specification is run with only MSA, year, and sector fixed effects (specification
1), a one-log point increase in firms per worker is associated with an increase of about
0.06 log points in the EE transition rate. Further, controls for demographic composition of
workers and firms in the labor market (specification 2) increase the correlation between
the two variables to 0.08. Additionally, introducing sector-year andMSA-year fixed effects
(specification 3) keeps the coefficient increases the correlation to 0.11. Overall, Table 5
suggests EE transition rates are higher in markets, defined asMSA-sector pairs, with more
firms per worker.28

27I do not use time-series differences within local labor markets to identify the relation between firms per
worker and labor flows because of the relatively small time length of the sample, which is confounded by
the Great Recession. The majority of states enter the sample post-2004, and the annual dataset from 2004-18,
ignoring the effects of 2008-12, does not offer enough variation. I , therefore, utilize cross-sectional variation.

28I also run the same specification using job-to-job hires rates and find that it is positively correlated with
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Table 5: OLS Regressions of Employer-to-Employer Transition Rate on Number of Firms
per Worker

Dependent Variable: Log EE Rate
(1) (2) (3)

Log Firms per Worker 0.056∗∗∗ 0.084∗∗∗ 0.106∗∗∗
(0.021) (0.017) (0.017)

Controls N Y Y
Metro-Year FE N N Y
Industry-Year FE N N Y
N 113267 69867 69819
R2 0.91 0.94 0.96

Notes: This table displays regressions of job mobility on the number of firms per worker in each column.
The dependent variables are logs of the Employer-to-Employer Separations Rate. All regressions control
for MSA, year, and sector FEs. Column (2) additionally includes controls for the fraction of workforce in
each sector-MSA-year cell belonging to different age, education, firm age, and firm size groups. Column
(3) further includes MSA x year and Sector x year fixed effects. Sectors are defined as two-digit NAICS
industries. SEs clustered at MSA x Sector level in parenthesis. Sample trimmed at 5 and 95 percentiles.
Source: BDS, QWI, and Job-to-Job (J2J) flows data by the LEHD, 2000-2017. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01

To sum, this section shows a positive association between firms per worker and job-to-
job flows, and these results are robust when controlling for time-varying characteristics
of metropolitan areas and sectors, as well as employment composition across worker and
firm demographic groups at the MSA-by-sector level. Insofar as the number of firms re-
flects employer competition across local labor markets, these results are indicative of the
model’s implications for the decline in labormarket dynamism being driven by decreasing
the number of firms per worker.

4.2.2 Firms Per Worker and Payroll Share of Value Added

The model presented in the last section showed that wages relative to productivity are
positively related to the number of firms per worker. As the labor market becomes more
crowded with firms, the outside options of the worker improve. The retaliation channel
has less bite, which increases the option value of search and, therefore, the worker’s share
of thematch. Thus, workers facing a higher number of firms realize a higher averagewage
level for a given level of productivity.

In this section, I document a positive relation between firms per worker and the com-
pensation to payroll employees as a fraction of the gross value added. This ratio can be
firms per worker across all specifications shown above. The results of this robustness exercise are omitted.
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Table 6: OLS Regressions of Payroll of Value Added on Number of Firms per Worker

Dependent Var.: Log Payroll Share of Value Added
(1) (2) (3)

Log Firms per Worker 0.092∗∗∗ 0.075∗∗∗ 0.076∗∗∗
(0.014) (0.015) (0.017)

Year FE N Y Y
2-digit Industry FE N Y Y
Industry-Year FE N N Y
N 1601 1601 1522
R2 0.03 0.21 0.18

Notes: This table displays regressions of log payroll share of value added on the log number of firms per
worker in each column. Column (1) shows the raw correlation coefficient. Columns (2)-(3) successively
add controls for year, 11 sectors, and year-sector fixed effects. The sample is at the year-industry level from
1987-2019 for 58 industries defined at the two- and three-digit NAICS level. Robust SEs in parenthesis.
Sample trimmed at 5 and 95 percentiles and Agriculture and Mining sectors have been removed. Source:
Bureau of Economic Analysis, 1987-2019. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

expressed as:

Payroll Share of Value Added =
Average hourly compensation to payroll employees×Hours worked

Quantity produced

where the average hourly compensation includes wages and salaries to employees on
payroll along with employer contributions to pension and insurance funds. To the best of
myknowledge, this is the onlymeasure ofwages/productivity available at a disaggregated
industry level. I utilize the cross-industry dispersion and specify the following:

log(Wages/Productivity)jkt = β · log(Firms Per Worker)jkt + αk + αt + ϵjkt (16)

where log(Wages/Productivity)jkt is the log of payroll share of value added in 58 industries
(j) expressed at the two- and three-digit levels, in eleven sectors-k for 32 years (t), from
1988-2019. The main explanatory variable is the log of firms per worker at the industry-
sector-year level, and αk and αt are, respectively, sector and year fixed effects.

Table 6 reports the elasticity of wages/productivity to firms per worker. Specifica-
tion (1) shows the raw correlation coefficient, whereas specifications (2)-(3) successively
control for a year, eleven 2-digit sectors, and year-sector fixed effects. The variation in
the last column utilizes differences across disaggregated industries and industry-years,
within a broader sector and year. It also controls for time-varying characteristics of
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the sector to which the industries belong. The regression coefficient remains positive
across all specifications, showing that the number of firms per worker positively relates
to wages/productivity. Specification (1) shows that a one-log point increase in firms per
worker is associated with an increase of about 0.09 log points in the payroll share. Further,
controlling for fixed differences across sectors and year-by-sectors decreases the correla-
tion between the two variables to 0.08 in specifications (3) and (4).

To sum up, the table shows that labor markets, defined as disaggregated industries
with more firms per worker, also see a higher payroll share of value added.

4.2.3 Firms Per Worker and Wage Growth of Job Switchers and Stayers

The model presented in the last section predicts that wage growth associated with EE
transitions is negatively related, while that associated with continuous job spells is posi-
tively related to the number of firms per worker. As the workers’ labor market becomes
populated with an increasing number of firms, they become more likely to receive out-
side offers through on-the-job search. In such a setting, workers receiving more offers on
the job realize higher levels of wages (and potentially max out on wages in the model) as
job stayers. Thus, when they transition from one job to another, they realize lower gains
associated with those moves. This leads wage growth realized through job switches to be
negatively related to firms per worker. In this section, I document these model-implied
relationships in the 1996 panel data from the SIPP. The reduced form specification is the
following:

∆log(w)kijst = β1log(Firms Per Worker)jst + β2Xit + αj + αs + αt + ϵijst (17)

where ∆log(w)kijst is the change in the log of (1) wages paid to hourly workers and
(2) earnings paid to non-hourly workers, both deflated by the Consumer Price Index-
Urban. The subscripts i denotes individual, t, the calendar-month, j, the sector, s, the
state, and superscript k ∈ {Stayer, Switcher} distinguishes between a job-switcher and a
job stayer continuously employed over a year. ∆log(w) is computedmonth-over-month for
job switchers and over a year for job-stayers. The sample is restricted toworkersmaking EE
transitions or completing at least one 12-month employment spell with the same employer.
The primary explanatory variable, log(Firms Per Worker) is the firms per worker defined
for state-s and two-digit sector-j.29 Xit is a vector of worker and job-specific characteristics,

29The time convention I follow in assigning annually observed BDS data to monthly SIPP data follows
Moscarini and Postel-Vinay (2012). I assign year t, April to year t+1, March observations of the SIPP to
firms and workers of year t+1. This is because BDS observations are reported in mid-March of each year
and are assumed to reflect the labor market of the previous year.
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Table 7: OLS Regressions of Wage Growth associated with J2J transitions on Number of
Firms per Worker

(a) Wage Growth | Job Switchers (b) Wage Growth | Job Stayers
Hourly Worker Monthly Earnings Hourly Wages Monthly Earnings

(1) (2) (3) (4)
Log (Firms Per Worker) -0.0112∗∗ -0.0291∗∗ 0.0006 0.0084∗∗

(0.005) (0.014) (0.001) (0.004)
State FE ✓ ✓ ✓ ✓

2-digit Industry FE ✓ ✓ ✓ ✓

Calendar month FE ✓ ✓ ✓ ✓

Observations 18113 7918 26845 20010
R2 0.02 0.04 0.42 0.34

Notes: This table displays regressions of wage growth associated with job-to-job transitions and 12-month
employment spells on the number of firms per worker. In Panel (a), the dependent variables are the month-
over-month change in the log of the hourly wage rate for hourly workers (Column 1) and earnings for
non-hourly workers (Column 2). The sample pertains to workers making EE transitions. In Panel (b), the
dependent variables are the annual changes in the log of the hourly wage rate for hourly workers (Column
3), and earnings for non-hourly workers (Column 4). The sample pertains to workers with a continuous
12-month employment spell with the same employer. All regressions control for a vector of worker and job-
specific characteristics, including dummies for age, squared age, education, race, and gender of the worker,
andwhether the employer is in the public sector, the occupation and unionization status of the job. Panel (a)
includes controls pertaining to the worker’s separating sector, while Panel (b) includes controls pertaining
to the worker’s current sector. Panel (b) further controls for worker-fixed effects. SEs clustered at State x
Sector level in parenthesis. Sample trimmed at 5 and 95 percentiles. Source: Survey of Income and Program
Participation, 1996-2000 (1996 Panel). ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

including dummies for age, squared age, education, race, and gender of the worker, and
whether the employer is in the public sector, the occupation and unionization status of
the job to control for composition effects. αj , αs and αt denote sector, state and calendar-
month effects. For job switchers, the right-hand side variables are associated with the
job at month t − 1, i.e., pertaining to the job that the worker is separating from while
making the EE transition. The results remain robust if I instead benchmark the right-hand
side variables to the job the worker is getting hired to. The regressions for job stayers
additionally include person-fixed effects. I use person-weights, restrict the sample to 16-
65-year-old individuals, and cluster standard errors at the state-by-sector level.

Table 7 Panel (a) presents the regression results for job switchers. Columns (1) and
(2) show that a ten percent increase in firm per worker is associated with a 0.1 percentage
point decrease in wage growth and a 0.3 percentage point decrease in the earnings growth
associatedwith job-to-job transitions. Panel(b) reports the results for job stayers. Columns
(3) and (4) show that a ten percent increase in firms per worker is associated with a 0.08

46



percentage point increase in earnings growth of job stayers and a negligible increase in
the wage growth of hourly workers. Overall, I find support for the idea that workers in
markets with higher firms per worker realize a smaller wage growth as job switchers and
higher ones as stayers.

5 Conclusion

Employer-to-employer transition rate declined from the late 1990s to the 2010s in the US.
Concurrently, real wages failed to keep pace with productivity. In this paper, I explore the
role of firmmarket power in driving the decrease in worker mobility and wages. Mymea-
sure of labor market power is the number of employers per worker, which is the inverse
of the average firm size. I show that this ratio has decreased both in the aggregate US
economy as well as in sub-markets defined by geographies and industries from the early
1980s, preceding the decline in worker mobility and wages.

I examine the link between firm competition, worker mobility, and wages in a search
model of the labor market where an increase in employer market power restricts workers’
outside options through three main channels. First, as firms in a labor market shrink,
holding the employees constant, each firm becomes larger. As employment and job offers
get concentrated in large firms, workers in such firms face a reduction in the share of
outside offers as they cannot access offers from their own firms. Second, firms can retaliate
against potential employees by not allowing their applicants who reject their offers to re-
apply to them. This reduces the applicantâĂŹs value from searching outside of the firm.
Third, the skewed distribution of firms along the productivity distribution gives rise to
a small number of mega-firms at the top of the job ladder. As the number of firms per
worker among mega-firms becomes even smaller over time, these firms amplify the effect
of the two channels described above.

I calibrate themodel tomatch the 1985-90 US economy and evaluate it against the 2012-
17 period. The model can quantitatively account for about 2/3rd of the decrease in EE
transitions and 1/5th of the decline in wages relative to productivity. I also find evidence
of the model’s implications across sub-markets characterized by states and sectors of the
US:markets with a higher firm perworker are associatedwith a higher EE rate and payroll
share as a fraction of gross value added.

This paper adds to the growing literature on the decline in labor market dynamism in
the US. It offers a market-power-based explanation for declining worker mobility by ex-
amining a previously unexplored link between firms per worker and EE transitions. With
the increased availability of micro-data from the US Census Bureau, a more thorough in-
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vestigation of the degree of competition in a worker’s relevant labor market and how that
affects measures of labor market dynamism is possible. The analysis presented in this
paper abstracts from worker heterogeneity and how workers at various parts of the skill
distribution are affected by changes in labor market competition. I leave that as an area
of future research for this project. This paper takes a step towards understanding the link
between two widely discussed and contendedmacroeconomic aggregates in the US econ-
omy - rising firm market power in labor markets and declining labor market dynamism -
and explores its implications on wages.
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